{"title":"专家系统中基于卷积图注意网络的药物-靶标相互作用预测。","authors":"R Mythili, N Parthiban","doi":"10.1007/s11030-025-11290-8","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting drug-target interaction (DTI) is crucial in drug discovery and repurposing, as it significantly cuts the time and costs associated with traditional experimental methods. To address these challenges, this study introduces an advanced deep learning framework that integrates graph-based neural networks with novel feature selection mechanisms to improve DTI prediction accuracy. A Convolutional Multilayer Extreme Adversarial Graph Attention-based Neural Network (CMEAG-ANN), combined with a Fast Correlation-Based Gradient Naïve Bayes and Binary Pattern Selection (FC-GNBBPS) algorithm, is proposed for the robust and biologically meaningful feature extraction from DNA molecule-derived data. Using graph attention algorithms that capture complex relationships within molecular graphs, CMEAG-ANN effectively integrates structural and evolutionary aspects of drugs and target proteins. It uses both molecular fingerprints and PSSM-based annotations, ensuring a rich representation of chemical and biological information. Experimental evaluations on benchmark datasets, including approved_drug_target dataset, ImDrug dataset, DrugProt dataset, and Drug Combination Extraction Dataset, are compared with the CMEAG-ANN and the baseline models. The CMEAG-ANN model achieves an accuracy of 99.17%, precision of 99.11%, recall of 98.83%, F1-score of 98.96%, and specificity of 98.74%. This study highlights the model's effectiveness in improving the reliability and efficiency of DTI systems through biologically grounded feature selection.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced drug-target interaction prediction using convolutional graph attention networks in expert systems.\",\"authors\":\"R Mythili, N Parthiban\",\"doi\":\"10.1007/s11030-025-11290-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predicting drug-target interaction (DTI) is crucial in drug discovery and repurposing, as it significantly cuts the time and costs associated with traditional experimental methods. To address these challenges, this study introduces an advanced deep learning framework that integrates graph-based neural networks with novel feature selection mechanisms to improve DTI prediction accuracy. A Convolutional Multilayer Extreme Adversarial Graph Attention-based Neural Network (CMEAG-ANN), combined with a Fast Correlation-Based Gradient Naïve Bayes and Binary Pattern Selection (FC-GNBBPS) algorithm, is proposed for the robust and biologically meaningful feature extraction from DNA molecule-derived data. Using graph attention algorithms that capture complex relationships within molecular graphs, CMEAG-ANN effectively integrates structural and evolutionary aspects of drugs and target proteins. It uses both molecular fingerprints and PSSM-based annotations, ensuring a rich representation of chemical and biological information. Experimental evaluations on benchmark datasets, including approved_drug_target dataset, ImDrug dataset, DrugProt dataset, and Drug Combination Extraction Dataset, are compared with the CMEAG-ANN and the baseline models. The CMEAG-ANN model achieves an accuracy of 99.17%, precision of 99.11%, recall of 98.83%, F1-score of 98.96%, and specificity of 98.74%. This study highlights the model's effectiveness in improving the reliability and efficiency of DTI systems through biologically grounded feature selection.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11290-8\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11290-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Advanced drug-target interaction prediction using convolutional graph attention networks in expert systems.
Predicting drug-target interaction (DTI) is crucial in drug discovery and repurposing, as it significantly cuts the time and costs associated with traditional experimental methods. To address these challenges, this study introduces an advanced deep learning framework that integrates graph-based neural networks with novel feature selection mechanisms to improve DTI prediction accuracy. A Convolutional Multilayer Extreme Adversarial Graph Attention-based Neural Network (CMEAG-ANN), combined with a Fast Correlation-Based Gradient Naïve Bayes and Binary Pattern Selection (FC-GNBBPS) algorithm, is proposed for the robust and biologically meaningful feature extraction from DNA molecule-derived data. Using graph attention algorithms that capture complex relationships within molecular graphs, CMEAG-ANN effectively integrates structural and evolutionary aspects of drugs and target proteins. It uses both molecular fingerprints and PSSM-based annotations, ensuring a rich representation of chemical and biological information. Experimental evaluations on benchmark datasets, including approved_drug_target dataset, ImDrug dataset, DrugProt dataset, and Drug Combination Extraction Dataset, are compared with the CMEAG-ANN and the baseline models. The CMEAG-ANN model achieves an accuracy of 99.17%, precision of 99.11%, recall of 98.83%, F1-score of 98.96%, and specificity of 98.74%. This study highlights the model's effectiveness in improving the reliability and efficiency of DTI systems through biologically grounded feature selection.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;