几何翘曲补偿数值方法的比较

IF 1.8 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Steffen Tillmann, Stefan Basermann, Stefanie Elgeti
{"title":"几何翘曲补偿数值方法的比较","authors":"Steffen Tillmann,&nbsp;Stefan Basermann,&nbsp;Stefanie Elgeti","doi":"10.1002/fld.5404","DOIUrl":null,"url":null,"abstract":"<p>In injection molding processes, shrinkage and warpage cause deviations in the size and shape of produced parts compared to the cavity shape. While shrinkage is due to the change of material density during solidification, warpage is caused by uneven cooling and internal stresses within the part. One approach to mitigate these effects is by adjusting the cavity shape to anticipate the deformation. While finding the optimal cavity shape is often experience-based in practice, numerical design optimization can greatly assist in this process. In this study, we evaluate various numerical algorithms from existing literature to identify the optimal cavity shape. Each method is briefly outlined regarding how it adapts the geometry, and we discuss their respective strengths and weaknesses for different scenarios. We conduct comparisons using 3D geometries of varying complexity. Our findings demonstrate that, for geometric warpage compensation, the node-based reverse geometry method yields the least warpage and is computationally cost-effective. Furthermore, it is straightforward to implement and consistently performs well across different geometries.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"97 9","pages":"1280-1288"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fld.5404","citationCount":"0","resultStr":"{\"title\":\"Comparison of Numerical Methods for Geometric Warpage Compensation\",\"authors\":\"Steffen Tillmann,&nbsp;Stefan Basermann,&nbsp;Stefanie Elgeti\",\"doi\":\"10.1002/fld.5404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In injection molding processes, shrinkage and warpage cause deviations in the size and shape of produced parts compared to the cavity shape. While shrinkage is due to the change of material density during solidification, warpage is caused by uneven cooling and internal stresses within the part. One approach to mitigate these effects is by adjusting the cavity shape to anticipate the deformation. While finding the optimal cavity shape is often experience-based in practice, numerical design optimization can greatly assist in this process. In this study, we evaluate various numerical algorithms from existing literature to identify the optimal cavity shape. Each method is briefly outlined regarding how it adapts the geometry, and we discuss their respective strengths and weaknesses for different scenarios. We conduct comparisons using 3D geometries of varying complexity. Our findings demonstrate that, for geometric warpage compensation, the node-based reverse geometry method yields the least warpage and is computationally cost-effective. Furthermore, it is straightforward to implement and consistently performs well across different geometries.</p>\",\"PeriodicalId\":50348,\"journal\":{\"name\":\"International Journal for Numerical Methods in Fluids\",\"volume\":\"97 9\",\"pages\":\"1280-1288\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fld.5404\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fld.5404\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5404","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在注射成型过程中,收缩和翘曲会导致所生产零件的尺寸和形状与型腔形状相偏差。收缩是由于凝固过程中材料密度的变化,而翘曲是由于冷却不均匀和零件内部应力引起的。减轻这些影响的一种方法是通过调整空腔形状来预测变形。虽然在实践中寻找最佳的空腔形状通常是基于经验的,但数值设计优化可以极大地帮助这一过程。在本研究中,我们评估了现有文献中的各种数值算法,以确定最佳的空腔形状。每种方法都简要概述了它如何适应几何形状,并讨论了不同场景下它们各自的优缺点。我们使用不同复杂性的三维几何图形进行比较。我们的研究结果表明,对于几何翘曲补偿,基于节点的反向几何方法产生的翘曲最小,并且计算成本效益高。此外,它很容易实现,并且在不同的几何形状中表现一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparison of Numerical Methods for Geometric Warpage Compensation

Comparison of Numerical Methods for Geometric Warpage Compensation

In injection molding processes, shrinkage and warpage cause deviations in the size and shape of produced parts compared to the cavity shape. While shrinkage is due to the change of material density during solidification, warpage is caused by uneven cooling and internal stresses within the part. One approach to mitigate these effects is by adjusting the cavity shape to anticipate the deformation. While finding the optimal cavity shape is often experience-based in practice, numerical design optimization can greatly assist in this process. In this study, we evaluate various numerical algorithms from existing literature to identify the optimal cavity shape. Each method is briefly outlined regarding how it adapts the geometry, and we discuss their respective strengths and weaknesses for different scenarios. We conduct comparisons using 3D geometries of varying complexity. Our findings demonstrate that, for geometric warpage compensation, the node-based reverse geometry method yields the least warpage and is computationally cost-effective. Furthermore, it is straightforward to implement and consistently performs well across different geometries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Fluids
International Journal for Numerical Methods in Fluids 物理-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
111
审稿时长
8 months
期刊介绍: The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction. Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review. The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信