用金属有机化学气相沉积技术在工业兼容的300毫米Si(100)衬底上制造940纳米微型发光二极管

IF 3.9 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hadi Hijazi, Driss Mouloua, Mattéo Chobe, Léo Mallet-Dida, Mickael Martin, Jérémy Moeyaert, Sébastien Cavalaglio, Nathalia Massara, Juliette Mignot, Jérôme Richy, Philippe Grosse, Jean-Michel Hartmann, Thierry Baron
{"title":"用金属有机化学气相沉积技术在工业兼容的300毫米Si(100)衬底上制造940纳米微型发光二极管","authors":"Hadi Hijazi,&nbsp;Driss Mouloua,&nbsp;Mattéo Chobe,&nbsp;Léo Mallet-Dida,&nbsp;Mickael Martin,&nbsp;Jérémy Moeyaert,&nbsp;Sébastien Cavalaglio,&nbsp;Nathalia Massara,&nbsp;Juliette Mignot,&nbsp;Jérôme Richy,&nbsp;Philippe Grosse,&nbsp;Jean-Michel Hartmann,&nbsp;Thierry Baron","doi":"10.1002/adpr.202400226","DOIUrl":null,"url":null,"abstract":"<p>III-V light-emitting diodes (LEDs) have been attracting much interest due to their ability to cover a large spectrum of interesting wavelength for various applications. However, their incompatibility with integration on Si platforms compatible with complementary metal-oxide-semiconductor standards makes their high mass production a challenging task. Herein, the fabrication of 940 nm micro-LED on 300 mm Si wafers is reported. The active zone based on InGaAs/AlGaAs multiquantum wells is epitaxially grown by metal–organic chemical vapor deposition on two types of buffers, themselves on Si substrates: 500 nm thick GaAs and 500 nm GaAs 700 nm Ge bilayers. Very interesting results have been obtained on both structures in terms of external quantum efficiency (EQE), for example, about <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo> </mo>\n <mo>×</mo>\n <mo> </mo>\n <msup>\n <mrow>\n <mn>10</mn>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$2 \\textrm{ } \\times \\textrm{ } \\left(10\\right)^{- 3}$</annotation>\n </semantics></math>% and <span></span><math>\n <semantics>\n <mrow>\n <mn>0.4</mn>\n <mo> </mo>\n <mo>×</mo>\n <mo> </mo>\n <msup>\n <mrow>\n <mn>10</mn>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$0.4 \\textrm{ } \\times \\textrm{ } \\left(10\\right)^{- 3}$</annotation>\n </semantics></math>%, that is, 1/3rd and 1/15th the reference EQE obtained on bulk GaAs substrates. These results can easily be improved. Such demonstration offers a very promising roadmap for the monolithic integration of III-V μ-LED on Si platforms.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 8","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400226","citationCount":"0","resultStr":"{\"title\":\"940 nm Micro-Light-Emitting Diode Fabricated on Industry-Compatible 300 mm Si (100) Substrate by Metal–Organic Chemical Vapor Deposition\",\"authors\":\"Hadi Hijazi,&nbsp;Driss Mouloua,&nbsp;Mattéo Chobe,&nbsp;Léo Mallet-Dida,&nbsp;Mickael Martin,&nbsp;Jérémy Moeyaert,&nbsp;Sébastien Cavalaglio,&nbsp;Nathalia Massara,&nbsp;Juliette Mignot,&nbsp;Jérôme Richy,&nbsp;Philippe Grosse,&nbsp;Jean-Michel Hartmann,&nbsp;Thierry Baron\",\"doi\":\"10.1002/adpr.202400226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>III-V light-emitting diodes (LEDs) have been attracting much interest due to their ability to cover a large spectrum of interesting wavelength for various applications. However, their incompatibility with integration on Si platforms compatible with complementary metal-oxide-semiconductor standards makes their high mass production a challenging task. Herein, the fabrication of 940 nm micro-LED on 300 mm Si wafers is reported. The active zone based on InGaAs/AlGaAs multiquantum wells is epitaxially grown by metal–organic chemical vapor deposition on two types of buffers, themselves on Si substrates: 500 nm thick GaAs and 500 nm GaAs 700 nm Ge bilayers. Very interesting results have been obtained on both structures in terms of external quantum efficiency (EQE), for example, about <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mo> </mo>\\n <mo>×</mo>\\n <mo> </mo>\\n <msup>\\n <mrow>\\n <mn>10</mn>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mn>3</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$2 \\\\textrm{ } \\\\times \\\\textrm{ } \\\\left(10\\\\right)^{- 3}$</annotation>\\n </semantics></math>% and <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0.4</mn>\\n <mo> </mo>\\n <mo>×</mo>\\n <mo> </mo>\\n <msup>\\n <mrow>\\n <mn>10</mn>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mn>3</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$0.4 \\\\textrm{ } \\\\times \\\\textrm{ } \\\\left(10\\\\right)^{- 3}$</annotation>\\n </semantics></math>%, that is, 1/3rd and 1/15th the reference EQE obtained on bulk GaAs substrates. These results can easily be improved. Such demonstration offers a very promising roadmap for the monolithic integration of III-V μ-LED on Si platforms.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"6 8\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400226\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adpr.202400226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adpr.202400226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

III-V型发光二极管(led)由于其能够覆盖各种应用中有趣波长的大光谱而引起了人们的广泛关注。然而,它们不兼容与互补金属氧化物半导体标准兼容的Si平台集成,这使得它们的大规模生产成为一项具有挑战性的任务。本文报道了在300mm硅片上制备940nm微型led的方法。基于InGaAs/AlGaAs多量子阱的活性区是通过金属有机化学气相沉积在两种缓冲层上外延生长的,这两种缓冲层都是在Si衬底上:500 nm厚的GaAs和500 nm的GaAs 700 nm的Ge双层。在这两种结构上都得到了非常有趣的结果,比如外量子效率,大约2 × 10−3 $2 \textrm{} \乘以\textrm{} \左(10\右)^{- 3}$ %和0.4 × 10−3 $0.4 \textrm{} \times \textrm{} \left(10\right)^{- 3}$ %,即在大块GaAs衬底上获得的参考EQE的1/3和1/15。这些结果很容易得到改善。这样的演示为III-V μ led在Si平台上的单片集成提供了一个非常有前途的路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

940 nm Micro-Light-Emitting Diode Fabricated on Industry-Compatible 300 mm Si (100) Substrate by Metal–Organic Chemical Vapor Deposition

940 nm Micro-Light-Emitting Diode Fabricated on Industry-Compatible 300 mm Si (100) Substrate by Metal–Organic Chemical Vapor Deposition

940 nm Micro-Light-Emitting Diode Fabricated on Industry-Compatible 300 mm Si (100) Substrate by Metal–Organic Chemical Vapor Deposition

940 nm Micro-Light-Emitting Diode Fabricated on Industry-Compatible 300 mm Si (100) Substrate by Metal–Organic Chemical Vapor Deposition

940 nm Micro-Light-Emitting Diode Fabricated on Industry-Compatible 300 mm Si (100) Substrate by Metal–Organic Chemical Vapor Deposition

III-V light-emitting diodes (LEDs) have been attracting much interest due to their ability to cover a large spectrum of interesting wavelength for various applications. However, their incompatibility with integration on Si platforms compatible with complementary metal-oxide-semiconductor standards makes their high mass production a challenging task. Herein, the fabrication of 940 nm micro-LED on 300 mm Si wafers is reported. The active zone based on InGaAs/AlGaAs multiquantum wells is epitaxially grown by metal–organic chemical vapor deposition on two types of buffers, themselves on Si substrates: 500 nm thick GaAs and 500 nm GaAs 700 nm Ge bilayers. Very interesting results have been obtained on both structures in terms of external quantum efficiency (EQE), for example, about 2 × 10 3 $2 \textrm{ } \times \textrm{ } \left(10\right)^{- 3}$ % and 0.4 × 10 3 $0.4 \textrm{ } \times \textrm{ } \left(10\right)^{- 3}$ %, that is, 1/3rd and 1/15th the reference EQE obtained on bulk GaAs substrates. These results can easily be improved. Such demonstration offers a very promising roadmap for the monolithic integration of III-V μ-LED on Si platforms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信