一种灵活的单位Burr-XII-Poisson分位数回归建模方法及其在癌症、化疗和能源数据中的应用

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Mustapha Muhammad, Gaber Sallam Salem Abdalla, Abdoulie Faal, Ehab M. Almetwally, Mohammed Elgarhy
{"title":"一种灵活的单位Burr-XII-Poisson分位数回归建模方法及其在癌症、化疗和能源数据中的应用","authors":"Mustapha Muhammad,&nbsp;Gaber Sallam Salem Abdalla,&nbsp;Abdoulie Faal,&nbsp;Ehab M. Almetwally,&nbsp;Mohammed Elgarhy","doi":"10.1002/eng2.70312","DOIUrl":null,"url":null,"abstract":"<p>This article introduces the unit-Burr XII-Poisson (UBXIIP) distribution, a flexible model for bounded data in the unit interval. Unlike many existing alternatives, the UBXIIP offers enhanced versatility in modeling unit-domain phenomena. We further develop a quantile-based regression framework by reparameterizing the UBXIIP, enabling the direct interpretation of its parameters as quantiles. The regression coefficients are linked to the median of the response variable, providing intuitive and meaningful inference. Our approach provides a robust and interpretable method for analyzing relationships between predictors and bounded responses. The key statistical properties of the model are examined, including explicit closed-form expressions for the <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mtext>th</mtext>\n </mrow>\n <annotation>$$ r\\mathrm{th} $$</annotation>\n </semantics></math> moments, the quantile function, and the Shannon entropy. Parameter estimation for the UBXIIP distribution is performed using the maximum likelihood estimation (MLE) method. The efficiency of this estimation approach is assessed through Monte Carlo simulation studies by observing the behavior of the mean square error of the estimates. Furthermore, MLEs of the UBXIIP-quantile regression model is observed by comprehensive simulation studies through residual analysis. Three real-world applications are illustrated: modeling cell recovery rates post-chemotherapy, fitting remission times of bladder cancer patients, and assessing wind energy data. These case studies highlight the versatility and robustness of the UBXIIP distribution and its quantile regression counterpart, emphasizing their potential for diverse applications in medical research and renewable energy analysis. Likewise, they demonstrate their superior performance over the standard unit Burr XII and other competing distributions in terms of fit and predictive accuracy.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 8","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70312","citationCount":"0","resultStr":"{\"title\":\"A Flexible Approach to Quantile Regression Modeling With Unit Burr-XII-Poisson and Its Applications to Cancer, Chemotherapy, and Energy Data\",\"authors\":\"Mustapha Muhammad,&nbsp;Gaber Sallam Salem Abdalla,&nbsp;Abdoulie Faal,&nbsp;Ehab M. Almetwally,&nbsp;Mohammed Elgarhy\",\"doi\":\"10.1002/eng2.70312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article introduces the unit-Burr XII-Poisson (UBXIIP) distribution, a flexible model for bounded data in the unit interval. Unlike many existing alternatives, the UBXIIP offers enhanced versatility in modeling unit-domain phenomena. We further develop a quantile-based regression framework by reparameterizing the UBXIIP, enabling the direct interpretation of its parameters as quantiles. The regression coefficients are linked to the median of the response variable, providing intuitive and meaningful inference. Our approach provides a robust and interpretable method for analyzing relationships between predictors and bounded responses. The key statistical properties of the model are examined, including explicit closed-form expressions for the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mtext>th</mtext>\\n </mrow>\\n <annotation>$$ r\\\\mathrm{th} $$</annotation>\\n </semantics></math> moments, the quantile function, and the Shannon entropy. Parameter estimation for the UBXIIP distribution is performed using the maximum likelihood estimation (MLE) method. The efficiency of this estimation approach is assessed through Monte Carlo simulation studies by observing the behavior of the mean square error of the estimates. Furthermore, MLEs of the UBXIIP-quantile regression model is observed by comprehensive simulation studies through residual analysis. Three real-world applications are illustrated: modeling cell recovery rates post-chemotherapy, fitting remission times of bladder cancer patients, and assessing wind energy data. These case studies highlight the versatility and robustness of the UBXIIP distribution and its quantile regression counterpart, emphasizing their potential for diverse applications in medical research and renewable energy analysis. Likewise, they demonstrate their superior performance over the standard unit Burr XII and other competing distributions in terms of fit and predictive accuracy.</p>\",\"PeriodicalId\":72922,\"journal\":{\"name\":\"Engineering reports : open access\",\"volume\":\"7 8\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70312\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering reports : open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了单位区间内有界数据的一种灵活的单元- burr - XII-Poisson (UBXIIP)分布。与许多现有的替代方案不同,UBXIIP在单元域现象建模方面提供了增强的多功能性。我们进一步开发了一个基于分位数的回归框架,通过重新参数化UBXIIP,使其参数直接解释为分位数。回归系数与响应变量的中位数相关联,提供直观和有意义的推断。我们的方法为分析预测因子和有界响应之间的关系提供了一种稳健且可解释的方法。研究了该模型的关键统计特性,包括r次$$ r\mathrm{th} $$矩、分位数函数和香农熵的显式封闭表达式。使用最大似然估计(MLE)方法对UBXIIP分布进行参数估计。通过观察估计的均方误差的行为,通过蒙特卡罗模拟研究评估了该估计方法的有效性。通过残差分析,对ubxiip -分位数回归模型进行综合模拟研究,观察其最大似然值。三个现实世界的应用说明:模拟细胞恢复率化疗后,拟合缓解时间膀胱癌患者,并评估风能数据。这些案例研究突出了UBXIIP分布及其对应的分位数回归的多功能性和稳健性,强调了它们在医学研究和可再生能源分析中的多种应用潜力。同样,它们在拟合和预测准确性方面证明了其优于标准单位Burr XII和其他竞争分布的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Flexible Approach to Quantile Regression Modeling With Unit Burr-XII-Poisson and Its Applications to Cancer, Chemotherapy, and Energy Data

A Flexible Approach to Quantile Regression Modeling With Unit Burr-XII-Poisson and Its Applications to Cancer, Chemotherapy, and Energy Data

This article introduces the unit-Burr XII-Poisson (UBXIIP) distribution, a flexible model for bounded data in the unit interval. Unlike many existing alternatives, the UBXIIP offers enhanced versatility in modeling unit-domain phenomena. We further develop a quantile-based regression framework by reparameterizing the UBXIIP, enabling the direct interpretation of its parameters as quantiles. The regression coefficients are linked to the median of the response variable, providing intuitive and meaningful inference. Our approach provides a robust and interpretable method for analyzing relationships between predictors and bounded responses. The key statistical properties of the model are examined, including explicit closed-form expressions for the r th $$ r\mathrm{th} $$ moments, the quantile function, and the Shannon entropy. Parameter estimation for the UBXIIP distribution is performed using the maximum likelihood estimation (MLE) method. The efficiency of this estimation approach is assessed through Monte Carlo simulation studies by observing the behavior of the mean square error of the estimates. Furthermore, MLEs of the UBXIIP-quantile regression model is observed by comprehensive simulation studies through residual analysis. Three real-world applications are illustrated: modeling cell recovery rates post-chemotherapy, fitting remission times of bladder cancer patients, and assessing wind energy data. These case studies highlight the versatility and robustness of the UBXIIP distribution and its quantile regression counterpart, emphasizing their potential for diverse applications in medical research and renewable energy analysis. Likewise, they demonstrate their superior performance over the standard unit Burr XII and other competing distributions in terms of fit and predictive accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信