硅异质结太阳能电池设计中器件优化策略的偏置相关自由能损失分析

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2025-07-02 DOI:10.1002/solr.202500311
Habtamu Tsegaye Gebrewold, Karsten Bittkau, Andreas Lambertz, Uwe Rau, Kaining Ding
{"title":"硅异质结太阳能电池设计中器件优化策略的偏置相关自由能损失分析","authors":"Habtamu Tsegaye Gebrewold,&nbsp;Karsten Bittkau,&nbsp;Andreas Lambertz,&nbsp;Uwe Rau,&nbsp;Kaining Ding","doi":"10.1002/solr.202500311","DOIUrl":null,"url":null,"abstract":"<p>A multiscale electro-optical device model is employed to investigate free energy and other losses in a silicon heterojunction (SHJ) solar cell. A finite element method-based device model is coupled with free energy loss analysis (FELA) to calculate detailed bias voltage-dependent losses in terms of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>mAcm</mi>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\mathrm{mAcm}^{-2}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>mWcm</mi>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\mathrm{mWcm}^{-2}$</annotation>\n </semantics></math>. Such an approach provides insight into identifying possible pathways for synergetic optimization and redesigning a solar cell device in both laboratory and mass production settings. The SHJ solar cell investigated in this work demonstrates that the hole-selective contact (HSC) is responsible for a significant portion of the free energy loss. At maximum power point, a power density of ~1.6 mWcm<sup>−2</sup> at 1 sun is lost associated with carrier transport in HSC and recombination at both selective contacts. This results in a 1.6% absolute loss in power conversion efficiency (PCE). Auger recombination in the wafer limits the open-circuit voltage. The FELA suggests a pathway for synergistic optimization of the device to regain a significant portion of the ~2.6% absolute loss in PCE. Simultaneously adjusting the conductivity of a-Si layers in HSC and the concentration of free majority carriers in the wafer can improve the fill factor (FF) to ~87% and PCE close to 26%.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 15","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202500311","citationCount":"0","resultStr":"{\"title\":\"Detailed Bias-Dependent Free Energy Loss Analysis for Proposing Device Optimization Strategies in Silicon Heterojunction Solar Cell Design\",\"authors\":\"Habtamu Tsegaye Gebrewold,&nbsp;Karsten Bittkau,&nbsp;Andreas Lambertz,&nbsp;Uwe Rau,&nbsp;Kaining Ding\",\"doi\":\"10.1002/solr.202500311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A multiscale electro-optical device model is employed to investigate free energy and other losses in a silicon heterojunction (SHJ) solar cell. A finite element method-based device model is coupled with free energy loss analysis (FELA) to calculate detailed bias voltage-dependent losses in terms of <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>mAcm</mi>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathrm{mAcm}^{-2}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>mWcm</mi>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathrm{mWcm}^{-2}$</annotation>\\n </semantics></math>. Such an approach provides insight into identifying possible pathways for synergetic optimization and redesigning a solar cell device in both laboratory and mass production settings. The SHJ solar cell investigated in this work demonstrates that the hole-selective contact (HSC) is responsible for a significant portion of the free energy loss. At maximum power point, a power density of ~1.6 mWcm<sup>−2</sup> at 1 sun is lost associated with carrier transport in HSC and recombination at both selective contacts. This results in a 1.6% absolute loss in power conversion efficiency (PCE). Auger recombination in the wafer limits the open-circuit voltage. The FELA suggests a pathway for synergistic optimization of the device to regain a significant portion of the ~2.6% absolute loss in PCE. Simultaneously adjusting the conductivity of a-Si layers in HSC and the concentration of free majority carriers in the wafer can improve the fill factor (FF) to ~87% and PCE close to 26%.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"9 15\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202500311\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500311\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500311","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

采用多尺度电光器件模型研究了硅异质结(SHJ)太阳能电池的自由能和其他损耗。基于有限元方法的器件模型与自由能损失分析(FELA)相结合,以mAcm−2 $\mathrm{mAcm}^{-2}$和计算详细的偏置电压相关损耗mWcm−2 $\mathrm{mWcm}^{-2}$。这种方法为在实验室和大规模生产环境中确定协同优化和重新设计太阳能电池装置的可能途径提供了见解。本文研究的SHJ太阳能电池表明,空穴选择接触(HSC)是造成自由能损失的主要原因。在最大功率点,与HSC中的载流子输运和两个选择性接触处的重组相关的约1.6 mWcm−2的功率密度损失。这将导致1.6%的功率转换效率(PCE)的绝对损失。晶圆中的螺旋复合限制了开路电压。FELA结果表明,通过对器件进行协同优化,可以有效地弥补~2.6%的PCE绝对损耗,同时调整HSC中a- si层的电导率和晶圆中自由多数载流子的浓度,可以将填充因子(FF)提高到~87%,PCE接近26%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Detailed Bias-Dependent Free Energy Loss Analysis for Proposing Device Optimization Strategies in Silicon Heterojunction Solar Cell Design

Detailed Bias-Dependent Free Energy Loss Analysis for Proposing Device Optimization Strategies in Silicon Heterojunction Solar Cell Design

A multiscale electro-optical device model is employed to investigate free energy and other losses in a silicon heterojunction (SHJ) solar cell. A finite element method-based device model is coupled with free energy loss analysis (FELA) to calculate detailed bias voltage-dependent losses in terms of mAcm 2 $\mathrm{mAcm}^{-2}$ and mWcm 2 $\mathrm{mWcm}^{-2}$ . Such an approach provides insight into identifying possible pathways for synergetic optimization and redesigning a solar cell device in both laboratory and mass production settings. The SHJ solar cell investigated in this work demonstrates that the hole-selective contact (HSC) is responsible for a significant portion of the free energy loss. At maximum power point, a power density of ~1.6 mWcm−2 at 1 sun is lost associated with carrier transport in HSC and recombination at both selective contacts. This results in a 1.6% absolute loss in power conversion efficiency (PCE). Auger recombination in the wafer limits the open-circuit voltage. The FELA suggests a pathway for synergistic optimization of the device to regain a significant portion of the ~2.6% absolute loss in PCE. Simultaneously adjusting the conductivity of a-Si layers in HSC and the concentration of free majority carriers in the wafer can improve the fill factor (FF) to ~87% and PCE close to 26%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信