窄带隙钙钛矿太阳能电池界面损耗及钝化策略分析

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2025-07-04 DOI:10.1002/solr.202500291
Willemijn H. M. Remmerswaal, Lana M. Kessels, Bruno Branco, Giel G. F. van Huisseling, Dong Zhang, Martijn M. Wienk, René A. J. Janssen
{"title":"窄带隙钙钛矿太阳能电池界面损耗及钝化策略分析","authors":"Willemijn H. M. Remmerswaal,&nbsp;Lana M. Kessels,&nbsp;Bruno Branco,&nbsp;Giel G. F. van Huisseling,&nbsp;Dong Zhang,&nbsp;Martijn M. Wienk,&nbsp;René A. J. Janssen","doi":"10.1002/solr.202500291","DOIUrl":null,"url":null,"abstract":"<p>Tin-lead (Sn–Pb) halide perovskites hold promise as narrow-bandgap semiconductors in future solar cells. Currently, non-radiative recombination induced open-circuit voltage losses limit their full potential. To determine their origin, intrinsic and interfacial non-radiative recombination losses are investigated for Sn–Pb perovskite solar cells, and the effects of bulk and surface passivation strategies are assessed. Absolute photoluminescence is used to determine the quasi-Fermi level splitting in perovskite layers, with and without charge transport layers, and distinguish bulk and interface contributions. The intrinsic losses in the perovskite semiconductor and at its interfaces with the poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and C<sub>60</sub> charge transport layers contribute significantly to the overall voltage deficit. Incorporating glycine hydrochloride as bulk additive during processing reduces the non-radiative losses in the absorber. Likewise, surface passivation with alkane-diammonium iodides or cadmium iodide mitigates the non-radiative recombination induced by the C<sub>60</sub> electron transport layer by eliminating direct contact with the perovskite semiconductor. While each of these passivation strategies are beneficial, shortcomings remain in implementing them in actual devices because effective passivation of the perovskite can limit the efficient extraction of charges.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 15","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202500291","citationCount":"0","resultStr":"{\"title\":\"Analysis of Interfacial Losses and Passivation Strategies for Narrow-Bandgap Perovskite Solar Cells\",\"authors\":\"Willemijn H. M. Remmerswaal,&nbsp;Lana M. Kessels,&nbsp;Bruno Branco,&nbsp;Giel G. F. van Huisseling,&nbsp;Dong Zhang,&nbsp;Martijn M. Wienk,&nbsp;René A. J. Janssen\",\"doi\":\"10.1002/solr.202500291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tin-lead (Sn–Pb) halide perovskites hold promise as narrow-bandgap semiconductors in future solar cells. Currently, non-radiative recombination induced open-circuit voltage losses limit their full potential. To determine their origin, intrinsic and interfacial non-radiative recombination losses are investigated for Sn–Pb perovskite solar cells, and the effects of bulk and surface passivation strategies are assessed. Absolute photoluminescence is used to determine the quasi-Fermi level splitting in perovskite layers, with and without charge transport layers, and distinguish bulk and interface contributions. The intrinsic losses in the perovskite semiconductor and at its interfaces with the poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and C<sub>60</sub> charge transport layers contribute significantly to the overall voltage deficit. Incorporating glycine hydrochloride as bulk additive during processing reduces the non-radiative losses in the absorber. Likewise, surface passivation with alkane-diammonium iodides or cadmium iodide mitigates the non-radiative recombination induced by the C<sub>60</sub> electron transport layer by eliminating direct contact with the perovskite semiconductor. While each of these passivation strategies are beneficial, shortcomings remain in implementing them in actual devices because effective passivation of the perovskite can limit the efficient extraction of charges.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"9 15\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202500291\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500291\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500291","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

锡铅(Sn-Pb)卤化物钙钛矿有望成为未来太阳能电池的窄带隙半导体。目前,非辐射复合引起的开路电压损失限制了它们的全部潜力。为了确定它们的来源,研究了Sn-Pb钙钛矿太阳能电池的内在和界面非辐射复合损失,并评估了体积和表面钝化策略的影响。用绝对光致发光技术测定了钙钛矿层中有和没有电荷输运层的准费米能级分裂,并区分了体贡献和界面贡献。钙钛矿半导体及其与聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)和C60电荷输运层的界面上的固有损耗对总体电压亏缺有重要影响。在加工过程中加入甘氨酸盐酸盐作为散装添加剂可减少吸收剂中的非辐射损失。同样地,烷-碘化二铵或碘化镉的表面钝化通过消除与钙钛矿半导体的直接接触,减轻了由C60电子传递层引起的非辐射复合。虽然这些钝化策略都是有益的,但在实际设备中实施它们仍然存在缺点,因为钙钛矿的有效钝化会限制电荷的有效提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of Interfacial Losses and Passivation Strategies for Narrow-Bandgap Perovskite Solar Cells

Analysis of Interfacial Losses and Passivation Strategies for Narrow-Bandgap Perovskite Solar Cells

Tin-lead (Sn–Pb) halide perovskites hold promise as narrow-bandgap semiconductors in future solar cells. Currently, non-radiative recombination induced open-circuit voltage losses limit their full potential. To determine their origin, intrinsic and interfacial non-radiative recombination losses are investigated for Sn–Pb perovskite solar cells, and the effects of bulk and surface passivation strategies are assessed. Absolute photoluminescence is used to determine the quasi-Fermi level splitting in perovskite layers, with and without charge transport layers, and distinguish bulk and interface contributions. The intrinsic losses in the perovskite semiconductor and at its interfaces with the poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and C60 charge transport layers contribute significantly to the overall voltage deficit. Incorporating glycine hydrochloride as bulk additive during processing reduces the non-radiative losses in the absorber. Likewise, surface passivation with alkane-diammonium iodides or cadmium iodide mitigates the non-radiative recombination induced by the C60 electron transport layer by eliminating direct contact with the perovskite semiconductor. While each of these passivation strategies are beneficial, shortcomings remain in implementing them in actual devices because effective passivation of the perovskite can limit the efficient extraction of charges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信