硫系锑薄膜太阳能电池界面工程研究进展

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2025-07-11 DOI:10.1002/solr.202500330
Al Amin, Connor Cagno, Yizhao Wang, Feng Yan
{"title":"硫系锑薄膜太阳能电池界面工程研究进展","authors":"Al Amin,&nbsp;Connor Cagno,&nbsp;Yizhao Wang,&nbsp;Feng Yan","doi":"10.1002/solr.202500330","DOIUrl":null,"url":null,"abstract":"<p>Antimony chalcogenides (Sb<sub>2</sub>X<sub>3</sub>, where X = S, Se, or S<sub>x</sub>Se<sub>1−x</sub>) are promising materials for thin-film solar cells due to their tunable bandgaps (1.1–1.8 eV), high absorption coefficients (&gt;10<sup>5</sup> cm<sup>−1</sup>), nontoxicity, and earth-abundant composition. Recent advancements have achieved power conversion efficiencies (PCEs) exceeding 10%, with a record of 10.81% for Sb<sub>2</sub>(S, Se)<sub>3</sub> cells. However, interface-related issues, such as recombination losses and open-circuit voltage (<i>V</i><sub>OC</sub>) deficits, limit performance. Interface engineering strategies have significantly improved device efficiency and stability, including buffer layer optimization, defect passivation, surface treatments, post-processing, and doping. This review summarizes the latest developments in these areas, discusses ongoing challenges, and proposes future research directions to enhance the performance of antimony chalcogenide solar cells.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 15","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of Interface Engineering in Antimony Chalcogenide Thin Film Solar Cells\",\"authors\":\"Al Amin,&nbsp;Connor Cagno,&nbsp;Yizhao Wang,&nbsp;Feng Yan\",\"doi\":\"10.1002/solr.202500330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Antimony chalcogenides (Sb<sub>2</sub>X<sub>3</sub>, where X = S, Se, or S<sub>x</sub>Se<sub>1−x</sub>) are promising materials for thin-film solar cells due to their tunable bandgaps (1.1–1.8 eV), high absorption coefficients (&gt;10<sup>5</sup> cm<sup>−1</sup>), nontoxicity, and earth-abundant composition. Recent advancements have achieved power conversion efficiencies (PCEs) exceeding 10%, with a record of 10.81% for Sb<sub>2</sub>(S, Se)<sub>3</sub> cells. However, interface-related issues, such as recombination losses and open-circuit voltage (<i>V</i><sub>OC</sub>) deficits, limit performance. Interface engineering strategies have significantly improved device efficiency and stability, including buffer layer optimization, defect passivation, surface treatments, post-processing, and doping. This review summarizes the latest developments in these areas, discusses ongoing challenges, and proposes future research directions to enhance the performance of antimony chalcogenide solar cells.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"9 15\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500330\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500330","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

硫属锑(Sb2X3,其中X = S, Se,或SxSe1 - X)由于其可调带隙(1.1-1.8 eV),高吸收系数(>105 cm−1),无毒和地球丰富的成分而成为薄膜太阳能电池的有前途的材料。最近的进展已经实现了超过10%的功率转换效率(pce),其中Sb2(S, Se)3电池的功率转换效率达到了10.81%。然而,接口相关的问题,如重组损耗和开路电压(VOC)缺陷,限制了性能。界面工程策略显著提高了器件的效率和稳定性,包括缓冲层优化、缺陷钝化、表面处理、后处理和掺杂。本文综述了这些领域的最新进展,讨论了当前面临的挑战,并提出了提高硫系锑太阳能电池性能的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Review of Interface Engineering in Antimony Chalcogenide Thin Film Solar Cells

A Review of Interface Engineering in Antimony Chalcogenide Thin Film Solar Cells

Antimony chalcogenides (Sb2X3, where X = S, Se, or SxSe1−x) are promising materials for thin-film solar cells due to their tunable bandgaps (1.1–1.8 eV), high absorption coefficients (>105 cm−1), nontoxicity, and earth-abundant composition. Recent advancements have achieved power conversion efficiencies (PCEs) exceeding 10%, with a record of 10.81% for Sb2(S, Se)3 cells. However, interface-related issues, such as recombination losses and open-circuit voltage (VOC) deficits, limit performance. Interface engineering strategies have significantly improved device efficiency and stability, including buffer layer optimization, defect passivation, surface treatments, post-processing, and doping. This review summarizes the latest developments in these areas, discusses ongoing challenges, and proposes future research directions to enhance the performance of antimony chalcogenide solar cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信