瞬态表面光电压光谱法监测钙钛矿/硅串联中单个电池的电荷分离

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2025-07-11 DOI:10.1002/solr.202500321
Maxim Simmonds, Ke Xu, Steve Albrecht, Lars Korte, Igal Levine
{"title":"瞬态表面光电压光谱法监测钙钛矿/硅串联中单个电池的电荷分离","authors":"Maxim Simmonds,&nbsp;Ke Xu,&nbsp;Steve Albrecht,&nbsp;Lars Korte,&nbsp;Igal Levine","doi":"10.1002/solr.202500321","DOIUrl":null,"url":null,"abstract":"<p>Identification of charge carrier separation processes in perovskite/silicon tandem solar cells and recombination at buried interfaces of charge selective contacts are crucial for photovoltaic research. Here, intensity- and wavelength-dependent transient surface photovoltage (tr-SPV) is used to investigate slot-die-coated perovskite top layers deposited on n-type heterojunction silicon bottom cells. We show that using an appropriate combination of photon energy and/or bottom cell polarity, one can individually probe the buried interfaces of the bottom silicon cell or the perovskite's buried interfaces of a tandem solar cell: for excitation with higher energy photons, time delays before the onset of a strong SPV signal indicate significant hole minority drift before separation in the silicon bottom cells. Furthermore, symmetric bottom Si heterojunction solar cell stacks can serve to investigate the top perovskite stack including its junction to the bottom cell, unhampered by photovoltages from the silicon substrate. Thus, investigation of the buried interfaces in tandem devices using time-resolved surface photovoltage is found to yield valuable information on charge carrier extraction at buried interfaces and demonstrates its unique potential compared to more conventional approaches that rely on photoluminescence decay kinetics.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 15","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202500321","citationCount":"0","resultStr":"{\"title\":\"Monitoring Charge Separation of Individual Cells in Perovskite/Silicon Tandems via Transient Surface Photovoltage Spectroscopy\",\"authors\":\"Maxim Simmonds,&nbsp;Ke Xu,&nbsp;Steve Albrecht,&nbsp;Lars Korte,&nbsp;Igal Levine\",\"doi\":\"10.1002/solr.202500321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Identification of charge carrier separation processes in perovskite/silicon tandem solar cells and recombination at buried interfaces of charge selective contacts are crucial for photovoltaic research. Here, intensity- and wavelength-dependent transient surface photovoltage (tr-SPV) is used to investigate slot-die-coated perovskite top layers deposited on n-type heterojunction silicon bottom cells. We show that using an appropriate combination of photon energy and/or bottom cell polarity, one can individually probe the buried interfaces of the bottom silicon cell or the perovskite's buried interfaces of a tandem solar cell: for excitation with higher energy photons, time delays before the onset of a strong SPV signal indicate significant hole minority drift before separation in the silicon bottom cells. Furthermore, symmetric bottom Si heterojunction solar cell stacks can serve to investigate the top perovskite stack including its junction to the bottom cell, unhampered by photovoltages from the silicon substrate. Thus, investigation of the buried interfaces in tandem devices using time-resolved surface photovoltage is found to yield valuable information on charge carrier extraction at buried interfaces and demonstrates its unique potential compared to more conventional approaches that rely on photoluminescence decay kinetics.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"9 15\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202500321\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500321\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500321","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿/硅串联太阳能电池中载流子分离过程的识别以及电荷选择接触埋藏界面的重组是光伏研究的关键。本文利用与强度和波长相关的瞬态表面光电压(tr-SPV)研究了沉积在n型异质结硅底电池上的槽模涂层钙钛矿顶层。我们表明,使用光子能量和/或底部电池极性的适当组合,可以单独探测底部硅电池的埋藏界面或串联太阳能电池的钙钛矿的埋藏界面:对于高能量光子的激发,在强SPV信号开始之前的时间延迟表明在硅底部电池分离之前有显著的空穴少数漂移。此外,对称的底部硅异质结太阳能电池堆可以用来研究顶部钙钛矿堆,包括它与底部电池的结,不受硅衬底光伏的阻碍。因此,使用时间分辨表面光电压对串联器件中的埋藏界面进行研究,发现可以获得有关埋藏界面上载流子提取的宝贵信息,并且与依赖于光致发光衰变动力学的更传统方法相比,显示出其独特的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Monitoring Charge Separation of Individual Cells in Perovskite/Silicon Tandems via Transient Surface Photovoltage Spectroscopy

Monitoring Charge Separation of Individual Cells in Perovskite/Silicon Tandems via Transient Surface Photovoltage Spectroscopy

Identification of charge carrier separation processes in perovskite/silicon tandem solar cells and recombination at buried interfaces of charge selective contacts are crucial for photovoltaic research. Here, intensity- and wavelength-dependent transient surface photovoltage (tr-SPV) is used to investigate slot-die-coated perovskite top layers deposited on n-type heterojunction silicon bottom cells. We show that using an appropriate combination of photon energy and/or bottom cell polarity, one can individually probe the buried interfaces of the bottom silicon cell or the perovskite's buried interfaces of a tandem solar cell: for excitation with higher energy photons, time delays before the onset of a strong SPV signal indicate significant hole minority drift before separation in the silicon bottom cells. Furthermore, symmetric bottom Si heterojunction solar cell stacks can serve to investigate the top perovskite stack including its junction to the bottom cell, unhampered by photovoltages from the silicon substrate. Thus, investigation of the buried interfaces in tandem devices using time-resolved surface photovoltage is found to yield valuable information on charge carrier extraction at buried interfaces and demonstrates its unique potential compared to more conventional approaches that rely on photoluminescence decay kinetics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信