{"title":"用一种新的递归和pad<s:1>近似方法显式解Lane-Emden型方程","authors":"Sita Charkrit","doi":"10.1016/j.apnum.2025.07.008","DOIUrl":null,"url":null,"abstract":"<div><div>This article introduces a novel recursive algorithm for obtaining explicit solutions to initial value problems of Lane-Emden type equations. By combining the traditional power series method with Adomian polynomials, expressed in terms of solution coefficients, the algorithm achieves high accuracy and converges rapidly to the exact solution within only a few iterations. This formulation not only simplifies the solution process but also improves computational efficiency over several existing semi-analytical approaches by requiring fewer iterations to reach a desired level of accuracy. Additionally, the Padé approximation is applied to the power series solution to accelerate convergence and expand the convergence region, allowing the solution to remain accurate over a wider interval. Error analysis using absolute and residual errors confirms that the proposed method, both independently and in combination with Padé approximants, outperforms existing methods in terms of precision and applicability. Several examples illustrate the method’s accuracy, efficiency, and reliability in solving nonlinear singular initial value problems.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"218 ","pages":"Pages 159-181"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit solution of Lane-Emden type equations via a novel recurrence and Padé approximation approach\",\"authors\":\"Sita Charkrit\",\"doi\":\"10.1016/j.apnum.2025.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article introduces a novel recursive algorithm for obtaining explicit solutions to initial value problems of Lane-Emden type equations. By combining the traditional power series method with Adomian polynomials, expressed in terms of solution coefficients, the algorithm achieves high accuracy and converges rapidly to the exact solution within only a few iterations. This formulation not only simplifies the solution process but also improves computational efficiency over several existing semi-analytical approaches by requiring fewer iterations to reach a desired level of accuracy. Additionally, the Padé approximation is applied to the power series solution to accelerate convergence and expand the convergence region, allowing the solution to remain accurate over a wider interval. Error analysis using absolute and residual errors confirms that the proposed method, both independently and in combination with Padé approximants, outperforms existing methods in terms of precision and applicability. Several examples illustrate the method’s accuracy, efficiency, and reliability in solving nonlinear singular initial value problems.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"218 \",\"pages\":\"Pages 159-181\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927425001497\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425001497","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Explicit solution of Lane-Emden type equations via a novel recurrence and Padé approximation approach
This article introduces a novel recursive algorithm for obtaining explicit solutions to initial value problems of Lane-Emden type equations. By combining the traditional power series method with Adomian polynomials, expressed in terms of solution coefficients, the algorithm achieves high accuracy and converges rapidly to the exact solution within only a few iterations. This formulation not only simplifies the solution process but also improves computational efficiency over several existing semi-analytical approaches by requiring fewer iterations to reach a desired level of accuracy. Additionally, the Padé approximation is applied to the power series solution to accelerate convergence and expand the convergence region, allowing the solution to remain accurate over a wider interval. Error analysis using absolute and residual errors confirms that the proposed method, both independently and in combination with Padé approximants, outperforms existing methods in terms of precision and applicability. Several examples illustrate the method’s accuracy, efficiency, and reliability in solving nonlinear singular initial value problems.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.