哪些拉普拉斯共谱图具有相同的度序列?

IF 0.7 3区 数学 Q2 MATHEMATICS
Qianlin Yao , Yuling Lan , Jiachang Ye , Haiying Shan
{"title":"哪些拉普拉斯共谱图具有相同的度序列?","authors":"Qianlin Yao ,&nbsp;Yuling Lan ,&nbsp;Jiachang Ye ,&nbsp;Haiying Shan","doi":"10.1016/j.disc.2025.114720","DOIUrl":null,"url":null,"abstract":"<div><div>Liu et al. (2018) <span><span>[13]</span></span> raised the problem: “Which cospectral graphs have the same degree sequences?”. In this paper, we introduce some graph operations affecting the Laplacian spectral radius of a graph, and then provide a new method to construct Laplacian cospectral graphs from old Laplacian cospectral graphs. Based on this, we show that: Let <em>G</em> be a connected graph and let <em>H</em> be Laplacian cospectral with <em>G</em>. If the second largest Laplacian eigenvalue of graph <em>G</em> is less than 4, and <em>G</em> and <em>H</em> are not spanning subgraphs of <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, then <em>H</em> must have the same degree sequence as <em>G</em>, where <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is a specific graph defined in the paper. This result extends the corresponding result of Liu et al. (2018) <span><span>[13]</span></span>. Besides, extremal graphs are also provided to show that the condition related to <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is crucial.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114720"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Which Laplacian cospectral graphs have the same degree sequences?\",\"authors\":\"Qianlin Yao ,&nbsp;Yuling Lan ,&nbsp;Jiachang Ye ,&nbsp;Haiying Shan\",\"doi\":\"10.1016/j.disc.2025.114720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Liu et al. (2018) <span><span>[13]</span></span> raised the problem: “Which cospectral graphs have the same degree sequences?”. In this paper, we introduce some graph operations affecting the Laplacian spectral radius of a graph, and then provide a new method to construct Laplacian cospectral graphs from old Laplacian cospectral graphs. Based on this, we show that: Let <em>G</em> be a connected graph and let <em>H</em> be Laplacian cospectral with <em>G</em>. If the second largest Laplacian eigenvalue of graph <em>G</em> is less than 4, and <em>G</em> and <em>H</em> are not spanning subgraphs of <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, then <em>H</em> must have the same degree sequence as <em>G</em>, where <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is a specific graph defined in the paper. This result extends the corresponding result of Liu et al. (2018) <span><span>[13]</span></span>. Besides, extremal graphs are also provided to show that the condition related to <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is crucial.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 2\",\"pages\":\"Article 114720\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25003280\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25003280","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Liu et al.(2018)[13]提出了“哪些共谱图具有相同度序列?”的问题。本文介绍了一些影响图的拉普拉斯谱半径的图运算,并给出了一种由旧的拉普拉斯协谱图构造拉普拉斯协谱图的新方法。在此基础上,我们证明:设G为连通图,设H为与G的拉普拉斯共谱。如果图G的第二大拉普拉斯特征值小于4,且G和H都不是生成W1的子图,则H必须与G具有相同的度序列,其中W1是本文定义的一个特定图。该结果扩展了Liu et al.(2018)[13]的相应结果。此外,还提供了极值图来说明与W1相关的条件是至关重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Which Laplacian cospectral graphs have the same degree sequences?
Liu et al. (2018) [13] raised the problem: “Which cospectral graphs have the same degree sequences?”. In this paper, we introduce some graph operations affecting the Laplacian spectral radius of a graph, and then provide a new method to construct Laplacian cospectral graphs from old Laplacian cospectral graphs. Based on this, we show that: Let G be a connected graph and let H be Laplacian cospectral with G. If the second largest Laplacian eigenvalue of graph G is less than 4, and G and H are not spanning subgraphs of W1, then H must have the same degree sequence as G, where W1 is a specific graph defined in the paper. This result extends the corresponding result of Liu et al. (2018) [13]. Besides, extremal graphs are also provided to show that the condition related to W1 is crucial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信