有限域上的正守恒子

IF 0.8 2区 数学 Q2 MATHEMATICS
Dominique Guillot , Himanshu Gupta , Prateek Kumar Vishwakarma , Chi Hoi Yip
{"title":"有限域上的正守恒子","authors":"Dominique Guillot ,&nbsp;Himanshu Gupta ,&nbsp;Prateek Kumar Vishwakarma ,&nbsp;Chi Hoi Yip","doi":"10.1016/j.jalgebra.2025.07.016","DOIUrl":null,"url":null,"abstract":"<div><div>We resolve an algebraic version of Schoenberg's celebrated theorem [<em>Duke Math. J.</em>, 1942] characterizing entrywise matrix transforms that preserve positive definiteness. Compared to the classical real and complex settings, we consider matrices with entries in a finite field and obtain a complete characterization of such preservers for matrices of a fixed dimension. When the dimension of the matrices is at least 3, we prove that, surprisingly, the positivity preservers are precisely the positive multiples of the field's automorphisms. We also obtain characterizations of preservers in the significantly more challenging dimension 2 case over a finite field with <em>q</em> elements, unless <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> and <em>q</em> is not a square. Our proofs build on several novel connections between positivity preservers and field automorphisms via the works of Weil, Carlitz, and Muzychuk-Kovács, and via the structure of cliques in Paley graphs.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"684 ","pages":"Pages 479-523"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positivity preservers over finite fields\",\"authors\":\"Dominique Guillot ,&nbsp;Himanshu Gupta ,&nbsp;Prateek Kumar Vishwakarma ,&nbsp;Chi Hoi Yip\",\"doi\":\"10.1016/j.jalgebra.2025.07.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We resolve an algebraic version of Schoenberg's celebrated theorem [<em>Duke Math. J.</em>, 1942] characterizing entrywise matrix transforms that preserve positive definiteness. Compared to the classical real and complex settings, we consider matrices with entries in a finite field and obtain a complete characterization of such preservers for matrices of a fixed dimension. When the dimension of the matrices is at least 3, we prove that, surprisingly, the positivity preservers are precisely the positive multiples of the field's automorphisms. We also obtain characterizations of preservers in the significantly more challenging dimension 2 case over a finite field with <em>q</em> elements, unless <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> and <em>q</em> is not a square. Our proofs build on several novel connections between positivity preservers and field automorphisms via the works of Weil, Carlitz, and Muzychuk-Kovács, and via the structure of cliques in Paley graphs.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"684 \",\"pages\":\"Pages 479-523\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004247\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004247","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们解决了勋伯格著名定理的代数版本[杜克数学]。[J] ., 2002]保留正确定性的入口矩阵变换的特征。与传统的实数和复数设置相比,我们考虑了有限域中有元素的矩阵,并得到了固定维数矩阵的守恒子的完整表征。当矩阵的维数至少为3时,我们惊奇地证明了,正保持子正是域自同构的正倍数。我们也得到了在具有q个元素的有限域上更具挑战性的2维情况下守恒子的特征,除非q≡1(mod4)并且q不是平方。通过Weil, Carlitz和Muzychuk-Kovács的工作,以及通过Paley图中的团的结构,我们的证明建立在正守恒子和场自同构之间的几个新的联系上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positivity preservers over finite fields
We resolve an algebraic version of Schoenberg's celebrated theorem [Duke Math. J., 1942] characterizing entrywise matrix transforms that preserve positive definiteness. Compared to the classical real and complex settings, we consider matrices with entries in a finite field and obtain a complete characterization of such preservers for matrices of a fixed dimension. When the dimension of the matrices is at least 3, we prove that, surprisingly, the positivity preservers are precisely the positive multiples of the field's automorphisms. We also obtain characterizations of preservers in the significantly more challenging dimension 2 case over a finite field with q elements, unless q1(mod4) and q is not a square. Our proofs build on several novel connections between positivity preservers and field automorphisms via the works of Weil, Carlitz, and Muzychuk-Kovács, and via the structure of cliques in Paley graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信