矩形板的非定常湍流和旋涡脱落动力学:开度比的影响

IF 5.5 2区 工程技术 Q1 ENGINEERING, CIVIL
Liang Zhong , Xin Guan , Jinyang Liu , Yuheng Wu
{"title":"矩形板的非定常湍流和旋涡脱落动力学:开度比的影响","authors":"Liang Zhong ,&nbsp;Xin Guan ,&nbsp;Jinyang Liu ,&nbsp;Yuheng Wu","doi":"10.1016/j.oceaneng.2025.122356","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding how the opening ratio of rectangular plates affects turbulent flow dynamics, particularly multiscale vortex behaviors in transient flow fields, is crucial in fluid mechanics. This study establishes a three-dimensional model integrating air-liquid two-phase flow theory and Large Eddy Simulation (LES) to analyze flow separation, vortex shedding, and energy transport around rectangular plates. Results show that turbulence-induced shear layer separation on the front plate enhances entrainment, while direct interactions on the rear plate form smaller secondary recirculation zones. Analysis reveals that increasing the opening ratio (<em>E</em>) reduces wake vortex regions, whereas higher dimensionless pressure differences (<em>P∗</em>) amplify turbulence, redistributing wake vortices. Raising <em>E</em> from 0.1 to 0.9 decreases the wake recirculation area by approximately 80 % at <em>P∗</em> = 0.2 and 0.4, while near-wall recirculation areas grow by about 65 %. Spectral Proper Orthogonal Decomposition (SPOD) identifies von Kármán vortex shedding as the dominant wake energy mode, strengthening with larger <em>E</em>, while Kelvin-Helmholtz instabilities near the plate base weaken at low <em>E</em>. These insights provide a theoretical basis for optimizing underwater structures and offshore platforms under unsteady hydrodynamic loads.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"340 ","pages":"Article 122356"},"PeriodicalIF":5.5000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsteady turbulent flow and vortex shedding dynamics around rectangular plates: Effects of opening ratios\",\"authors\":\"Liang Zhong ,&nbsp;Xin Guan ,&nbsp;Jinyang Liu ,&nbsp;Yuheng Wu\",\"doi\":\"10.1016/j.oceaneng.2025.122356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding how the opening ratio of rectangular plates affects turbulent flow dynamics, particularly multiscale vortex behaviors in transient flow fields, is crucial in fluid mechanics. This study establishes a three-dimensional model integrating air-liquid two-phase flow theory and Large Eddy Simulation (LES) to analyze flow separation, vortex shedding, and energy transport around rectangular plates. Results show that turbulence-induced shear layer separation on the front plate enhances entrainment, while direct interactions on the rear plate form smaller secondary recirculation zones. Analysis reveals that increasing the opening ratio (<em>E</em>) reduces wake vortex regions, whereas higher dimensionless pressure differences (<em>P∗</em>) amplify turbulence, redistributing wake vortices. Raising <em>E</em> from 0.1 to 0.9 decreases the wake recirculation area by approximately 80 % at <em>P∗</em> = 0.2 and 0.4, while near-wall recirculation areas grow by about 65 %. Spectral Proper Orthogonal Decomposition (SPOD) identifies von Kármán vortex shedding as the dominant wake energy mode, strengthening with larger <em>E</em>, while Kelvin-Helmholtz instabilities near the plate base weaken at low <em>E</em>. These insights provide a theoretical basis for optimizing underwater structures and offshore platforms under unsteady hydrodynamic loads.</div></div>\",\"PeriodicalId\":19403,\"journal\":{\"name\":\"Ocean Engineering\",\"volume\":\"340 \",\"pages\":\"Article 122356\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029801825020402\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825020402","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

了解矩形板的开度比如何影响湍流动力学,特别是瞬态流场中的多尺度涡行为,在流体力学中是至关重要的。本文将气液两相流动理论与大涡模拟(LES)相结合,建立了矩形板周围流动分离、旋涡脱落和能量输运的三维模型。结果表明,湍流引起的前板剪切层分离增强了夹带,而后板的直接相互作用形成了较小的二次再循环区。分析表明,增大开度比(E)会减小尾流涡区,而增大无因次压差(P *)则会放大湍流,使尾流涡重新分布。当P∗= 0.2和0.4时,将E从0.1提高到0.9,尾流再循环面积减少约80%,而近壁面再循环面积增加约65%。频谱固有正交分解(SPOD)发现von Kármán旋涡脱落是主要的尾流能量模式,随着E的增大而增强,而板基附近的Kelvin-Helmholtz不稳定性在E的降低时减弱。这些发现为非定常水动力载荷下水下结构和海上平台的优化提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsteady turbulent flow and vortex shedding dynamics around rectangular plates: Effects of opening ratios
Understanding how the opening ratio of rectangular plates affects turbulent flow dynamics, particularly multiscale vortex behaviors in transient flow fields, is crucial in fluid mechanics. This study establishes a three-dimensional model integrating air-liquid two-phase flow theory and Large Eddy Simulation (LES) to analyze flow separation, vortex shedding, and energy transport around rectangular plates. Results show that turbulence-induced shear layer separation on the front plate enhances entrainment, while direct interactions on the rear plate form smaller secondary recirculation zones. Analysis reveals that increasing the opening ratio (E) reduces wake vortex regions, whereas higher dimensionless pressure differences (P∗) amplify turbulence, redistributing wake vortices. Raising E from 0.1 to 0.9 decreases the wake recirculation area by approximately 80 % at P∗ = 0.2 and 0.4, while near-wall recirculation areas grow by about 65 %. Spectral Proper Orthogonal Decomposition (SPOD) identifies von Kármán vortex shedding as the dominant wake energy mode, strengthening with larger E, while Kelvin-Helmholtz instabilities near the plate base weaken at low E. These insights provide a theoretical basis for optimizing underwater structures and offshore platforms under unsteady hydrodynamic loads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信