Saman Sarkawt Jaafar , Dlear Rafiq Saber , Nzar Rauf Abdullah
{"title":"二维ZnX2 (X = Cl, Br和I)半导体的稳定性、电子、磁性、热学和光学性质的DFT和AIMD研究","authors":"Saman Sarkawt Jaafar , Dlear Rafiq Saber , Nzar Rauf Abdullah","doi":"10.1016/j.chemphys.2025.112862","DOIUrl":null,"url":null,"abstract":"<div><div>This work examines the structural, electronic, magnetic, thermal, dynamic, and optical properties of two-dimensional (2D) ZnX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (X = Cl, Br, I) through density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. The 2D ZnX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> exhibits planar buckling in which ZnI<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> exhibits the highest degree of buckling, followed by ZnBr<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and ZnCl<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Consequently, the highest buckling of ZnI<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> exhibits the narrowest band gap, while the lowest buckling structure of ZnCl<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> gives rise a widest band gap. This suggests that the electronic band gap is predominantly influenced by buckling in addition to electronegativity differences. Moreover, spin–orbit coupling (SOC) induces a reduction in the band gaps of these non-magnetic structures, primarily through the splitting and shifting of electronic states. Furthermore, stability assessments confirm that ZnX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> structures are dynamically and thermally stable. In addition, thermal analysis reveals that ZnI<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> has the highest heat capacity, attributed to degenerate acoustic phonons. Finally, optical investigations indicate ZnI<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> absorbs light in the near-UV spectrum, while ZnCl<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and ZnBr<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> absorb in the Mid-UV region. The planar buckling significantly influence the physical properties of ZnX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> enhancing their suitability for advanced technological applications.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"599 ","pages":"Article 112862"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT and AIMD study of stability, electronic, magnetic, thermal, and optical properties of two-dimensional ZnX2 (X = Cl, Br and I) semiconductor\",\"authors\":\"Saman Sarkawt Jaafar , Dlear Rafiq Saber , Nzar Rauf Abdullah\",\"doi\":\"10.1016/j.chemphys.2025.112862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work examines the structural, electronic, magnetic, thermal, dynamic, and optical properties of two-dimensional (2D) ZnX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (X = Cl, Br, I) through density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. The 2D ZnX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> exhibits planar buckling in which ZnI<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> exhibits the highest degree of buckling, followed by ZnBr<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and ZnCl<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Consequently, the highest buckling of ZnI<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> exhibits the narrowest band gap, while the lowest buckling structure of ZnCl<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> gives rise a widest band gap. This suggests that the electronic band gap is predominantly influenced by buckling in addition to electronegativity differences. Moreover, spin–orbit coupling (SOC) induces a reduction in the band gaps of these non-magnetic structures, primarily through the splitting and shifting of electronic states. Furthermore, stability assessments confirm that ZnX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> structures are dynamically and thermally stable. In addition, thermal analysis reveals that ZnI<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> has the highest heat capacity, attributed to degenerate acoustic phonons. Finally, optical investigations indicate ZnI<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> absorbs light in the near-UV spectrum, while ZnCl<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and ZnBr<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> absorb in the Mid-UV region. The planar buckling significantly influence the physical properties of ZnX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> enhancing their suitability for advanced technological applications.</div></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"599 \",\"pages\":\"Article 112862\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301010425002630\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425002630","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
DFT and AIMD study of stability, electronic, magnetic, thermal, and optical properties of two-dimensional ZnX2 (X = Cl, Br and I) semiconductor
This work examines the structural, electronic, magnetic, thermal, dynamic, and optical properties of two-dimensional (2D) ZnX (X = Cl, Br, I) through density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. The 2D ZnX exhibits planar buckling in which ZnI exhibits the highest degree of buckling, followed by ZnBr and ZnCl. Consequently, the highest buckling of ZnI exhibits the narrowest band gap, while the lowest buckling structure of ZnCl gives rise a widest band gap. This suggests that the electronic band gap is predominantly influenced by buckling in addition to electronegativity differences. Moreover, spin–orbit coupling (SOC) induces a reduction in the band gaps of these non-magnetic structures, primarily through the splitting and shifting of electronic states. Furthermore, stability assessments confirm that ZnX structures are dynamically and thermally stable. In addition, thermal analysis reveals that ZnI has the highest heat capacity, attributed to degenerate acoustic phonons. Finally, optical investigations indicate ZnI absorbs light in the near-UV spectrum, while ZnCl and ZnBr absorb in the Mid-UV region. The planar buckling significantly influence the physical properties of ZnX enhancing their suitability for advanced technological applications.
期刊介绍:
Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.