具有氦循环和二氧化碳-甲醇合成的集成生物质燃料动力系统:可持续能源和碳减排的多目标优化

IF 8.3 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Mohamed Bechir Ben Hamida , Ali Basem , Narinderjit Singh Sawaran Singh , Kamal Sharma
{"title":"具有氦循环和二氧化碳-甲醇合成的集成生物质燃料动力系统:可持续能源和碳减排的多目标优化","authors":"Mohamed Bechir Ben Hamida ,&nbsp;Ali Basem ,&nbsp;Narinderjit Singh Sawaran Singh ,&nbsp;Kamal Sharma","doi":"10.1016/j.ijhydene.2025.150766","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an advanced hybrid energy system that combines biomass digestion, a gas turbine, a closed-loop helium cycle, and a methanol synthesis unit to achieve efficient power generation and carbon dioxide utilization. A comprehensive thermodynamic, exergoeconomic, and environmental (4E) analysis is conducted to assess system performance under varying operational conditions. Multi-objective optimization—utilizing artificial neural networks and a genetic algorithm—seeks to simultaneously maximize exergy efficiency and minimize both CO<sub>2</sub> emissions and unit product cost. Results show that the optimal configuration achieves an exergy efficiency of 39.8 %, a unit product cost of $96.5/GJ, and CO<sub>2</sub> emissions of 1.29 kg/kWh. The helium cycle enhances thermal recovery from the gas turbine exhaust, increasing net power output by 15.3 %. Meanwhile, the methanol synthesis unit effectively captures and converts CO<sub>2</sub> using hydrogen from a PEM electrolyzer, reducing environmental impact by 18.7 %. Parametric analyses reveal key trade-offs among thermal efficiency, hydrogen production, and methanol yield. Compared to conventional biomass systems, this integrated approach offers a scalable, cost-effective, and environmentally sustainable solution for low-carbon power and fuel production.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"162 ","pages":"Article 150766"},"PeriodicalIF":8.3000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated biomass-fueled power system with helium cycle and CO2-to-methanol synthesis: A multi-objective optimization for sustainable energy and carbon mitigation\",\"authors\":\"Mohamed Bechir Ben Hamida ,&nbsp;Ali Basem ,&nbsp;Narinderjit Singh Sawaran Singh ,&nbsp;Kamal Sharma\",\"doi\":\"10.1016/j.ijhydene.2025.150766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents an advanced hybrid energy system that combines biomass digestion, a gas turbine, a closed-loop helium cycle, and a methanol synthesis unit to achieve efficient power generation and carbon dioxide utilization. A comprehensive thermodynamic, exergoeconomic, and environmental (4E) analysis is conducted to assess system performance under varying operational conditions. Multi-objective optimization—utilizing artificial neural networks and a genetic algorithm—seeks to simultaneously maximize exergy efficiency and minimize both CO<sub>2</sub> emissions and unit product cost. Results show that the optimal configuration achieves an exergy efficiency of 39.8 %, a unit product cost of $96.5/GJ, and CO<sub>2</sub> emissions of 1.29 kg/kWh. The helium cycle enhances thermal recovery from the gas turbine exhaust, increasing net power output by 15.3 %. Meanwhile, the methanol synthesis unit effectively captures and converts CO<sub>2</sub> using hydrogen from a PEM electrolyzer, reducing environmental impact by 18.7 %. Parametric analyses reveal key trade-offs among thermal efficiency, hydrogen production, and methanol yield. Compared to conventional biomass systems, this integrated approach offers a scalable, cost-effective, and environmentally sustainable solution for low-carbon power and fuel production.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"162 \",\"pages\":\"Article 150766\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319925037656\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925037656","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种先进的混合能源系统,该系统结合了生物质消化、燃气轮机、闭环氦循环和甲醇合成装置,实现了高效发电和二氧化碳利用。综合热力学、燃烧经济和环境(4E)分析,评估系统在不同运行条件下的性能。多目标优化-利用人工神经网络和遗传算法-寻求同时最大化能源效率,最小化二氧化碳排放和单位产品成本。结果表明,最优配置的火用效率为39.8%,单位产品成本为96.5美元/GJ, CO2排放量为1.29 kg/kWh。氦气循环提高了燃气轮机废气的热回收,使净功率输出增加了15.3%。同时,甲醇合成装置利用PEM电解槽中的氢气有效地捕获和转化二氧化碳,将对环境的影响降低了18.7%。参数分析揭示了热效率,氢气生产和甲醇产量之间的关键权衡。与传统的生物质系统相比,这种综合方法为低碳电力和燃料生产提供了可扩展、经济高效、环境可持续的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated biomass-fueled power system with helium cycle and CO2-to-methanol synthesis: A multi-objective optimization for sustainable energy and carbon mitigation
This study presents an advanced hybrid energy system that combines biomass digestion, a gas turbine, a closed-loop helium cycle, and a methanol synthesis unit to achieve efficient power generation and carbon dioxide utilization. A comprehensive thermodynamic, exergoeconomic, and environmental (4E) analysis is conducted to assess system performance under varying operational conditions. Multi-objective optimization—utilizing artificial neural networks and a genetic algorithm—seeks to simultaneously maximize exergy efficiency and minimize both CO2 emissions and unit product cost. Results show that the optimal configuration achieves an exergy efficiency of 39.8 %, a unit product cost of $96.5/GJ, and CO2 emissions of 1.29 kg/kWh. The helium cycle enhances thermal recovery from the gas turbine exhaust, increasing net power output by 15.3 %. Meanwhile, the methanol synthesis unit effectively captures and converts CO2 using hydrogen from a PEM electrolyzer, reducing environmental impact by 18.7 %. Parametric analyses reveal key trade-offs among thermal efficiency, hydrogen production, and methanol yield. Compared to conventional biomass systems, this integrated approach offers a scalable, cost-effective, and environmentally sustainable solution for low-carbon power and fuel production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信