Au Nanostars/ Bi2S3/TiO2 Schottky/ s方案双异质结高效光催化析氢

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yuxin Sun, Jinhua Li, Zhiying Wang and Hancheng Zhu
{"title":"Au Nanostars/ Bi2S3/TiO2 Schottky/ s方案双异质结高效光催化析氢","authors":"Yuxin Sun, Jinhua Li, Zhiying Wang and Hancheng Zhu","doi":"10.1039/D5TA03337C","DOIUrl":null,"url":null,"abstract":"<p >To overcome the narrow light absorption range and high charge carrier recombination rate of TiO<small><sub>2</sub></small> as a widely utilized photocatalyst for hydrogen evolution, we present a rational design of the Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>/TiO<small><sub>2</sub></small> Schottky/S-scheme dual heterojunction photocatalyst modified with Au nanostars (AuNSs). The S-scheme Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>/TiO<small><sub>2</sub></small> heterojunction effectively extends light absorption into the visible region and facilitates efficient photogenerated carrier separation. As co-catalysts, AuNSs exhibit abundant active sites and the SPR effect, which can broaden the light absorption range to NIR and accelerate surface hydrogen evolution. Additionally, the Schottky junction formed between AuNSs and Bi<small><sub>2</sub></small>S<small><sub>3</sub></small> establishes a strong internal electric field, which introduces hot electron injection from AuNSs to Bi<small><sub>2</sub></small>S<small><sub>3</sub></small> and effectively suppresses carrier recombination. The AuNSs/Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>/TiO<small><sub>2</sub></small> catalyst exhibited a high hydrogen production rate (5.754 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>), along with excellent cycling stability. This study offers insights into interfacial modulation and performance enhancement of heterojunction materials for broad-spectrum-responsive photocatalysts.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 36","pages":" 30457-30466"},"PeriodicalIF":9.5000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Au nanostars/Bi2S3/TiO2 Schottky/S-scheme dual heterojunctions for efficient photocatalytic hydrogen evolution\",\"authors\":\"Yuxin Sun, Jinhua Li, Zhiying Wang and Hancheng Zhu\",\"doi\":\"10.1039/D5TA03337C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >To overcome the narrow light absorption range and high charge carrier recombination rate of TiO<small><sub>2</sub></small> as a widely utilized photocatalyst for hydrogen evolution, we present a rational design of the Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>/TiO<small><sub>2</sub></small> Schottky/S-scheme dual heterojunction photocatalyst modified with Au nanostars (AuNSs). The S-scheme Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>/TiO<small><sub>2</sub></small> heterojunction effectively extends light absorption into the visible region and facilitates efficient photogenerated carrier separation. As co-catalysts, AuNSs exhibit abundant active sites and the SPR effect, which can broaden the light absorption range to NIR and accelerate surface hydrogen evolution. Additionally, the Schottky junction formed between AuNSs and Bi<small><sub>2</sub></small>S<small><sub>3</sub></small> establishes a strong internal electric field, which introduces hot electron injection from AuNSs to Bi<small><sub>2</sub></small>S<small><sub>3</sub></small> and effectively suppresses carrier recombination. The AuNSs/Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>/TiO<small><sub>2</sub></small> catalyst exhibited a high hydrogen production rate (5.754 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>), along with excellent cycling stability. This study offers insights into interfacial modulation and performance enhancement of heterojunction materials for broad-spectrum-responsive photocatalysts.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 36\",\"pages\":\" 30457-30466\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta03337c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta03337c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了克服TiO2作为一种广泛应用的析氢光催化剂的光吸收范围窄和电荷载流子复合率高的缺点,我们设计了一种由Au纳米星修饰的Bi2S3/TiO2 Schottky/S-scheme双异质结光催化剂。S-scheme Bi2S3/TiO2异质结有效地将光吸收扩展到可见光区域,并促进了高效的光生载流子分离。作为助催化剂,AuNSs表现出丰富的活性位点和SPR效应,可以将光吸收范围扩大到近红外,加速表面析氢。此外,AuNSs与Bi2S3之间形成的肖特基结建立了强大的内部电场,将热电子从AuNSs注入Bi2S3,有效抑制载流子重组。ans /Bi2S3/TiO2催化剂具有较高的产氢率(5.754 mmol·g-1·h-1)和良好的循环稳定性。本研究为异质结材料的界面调制和广谱响应光催化剂的性能增强提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Au nanostars/Bi2S3/TiO2 Schottky/S-scheme dual heterojunctions for efficient photocatalytic hydrogen evolution

Au nanostars/Bi2S3/TiO2 Schottky/S-scheme dual heterojunctions for efficient photocatalytic hydrogen evolution

To overcome the narrow light absorption range and high charge carrier recombination rate of TiO2 as a widely utilized photocatalyst for hydrogen evolution, we present a rational design of the Bi2S3/TiO2 Schottky/S-scheme dual heterojunction photocatalyst modified with Au nanostars (AuNSs). The S-scheme Bi2S3/TiO2 heterojunction effectively extends light absorption into the visible region and facilitates efficient photogenerated carrier separation. As co-catalysts, AuNSs exhibit abundant active sites and the SPR effect, which can broaden the light absorption range to NIR and accelerate surface hydrogen evolution. Additionally, the Schottky junction formed between AuNSs and Bi2S3 establishes a strong internal electric field, which introduces hot electron injection from AuNSs to Bi2S3 and effectively suppresses carrier recombination. The AuNSs/Bi2S3/TiO2 catalyst exhibited a high hydrogen production rate (5.754 mmol g−1 h−1), along with excellent cycling stability. This study offers insights into interfacial modulation and performance enhancement of heterojunction materials for broad-spectrum-responsive photocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信