磷诱导的电子泵增强O2活化电催化生产H2O2。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-08-02 DOI:10.1021/acsnano.5c08610
Yingbi Chen, Qingguo Feng, Yu Bai, Meng Wang, Yuchao Wang, Peiyao Yang, Danni Deng, Xinran Zheng, Jiabi Jiang, Haitao Zheng, Guozhao Fang, Yi Zeng*, Xiang Xiong and Yongpeng Lei*, 
{"title":"磷诱导的电子泵增强O2活化电催化生产H2O2。","authors":"Yingbi Chen,&nbsp;Qingguo Feng,&nbsp;Yu Bai,&nbsp;Meng Wang,&nbsp;Yuchao Wang,&nbsp;Peiyao Yang,&nbsp;Danni Deng,&nbsp;Xinran Zheng,&nbsp;Jiabi Jiang,&nbsp;Haitao Zheng,&nbsp;Guozhao Fang,&nbsp;Yi Zeng*,&nbsp;Xiang Xiong and Yongpeng Lei*,&nbsp;","doi":"10.1021/acsnano.5c08610","DOIUrl":null,"url":null,"abstract":"<p >Electrochemical two-electron oxygen reduction reaction (2e<sup>–</sup> ORR) to produce hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is attractive, but poor H<sub>2</sub>O<sub>2</sub> selectivity and activity need to be overcome. Herein, a phosphorus-induced electron pump is demonstrated. The H<sub>2</sub>O<sub>2</sub> selectivity reaches &gt;90% (93.5% at 0.5 V) in the potential range of 0.2∼0.7 V. The Faradaic efficiency achieves 94.2% at 0.6 V. In situ Raman experiment and density functional theory calculation indicate that the O<sub>2</sub> adsorption and activation are enhanced. The *OOH intermediates are formed at a more positive potential. Furthermore, the universal mechanism of the electron pump is extended. At last, the potential to degrade antibiotics, <i>Escherichia coli</i>, etc., on site is confirmed. This work displays that the phosphorus-induced electron pump activates O<sub>2</sub>, which provides an insight into the electrocatalytic 2e<sup>–</sup> ORR.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 31","pages":"28801–28812"},"PeriodicalIF":16.0000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphorus-Induced Electron Pump Enhances O2 Activation for Electrocatalytic H2O2 Production\",\"authors\":\"Yingbi Chen,&nbsp;Qingguo Feng,&nbsp;Yu Bai,&nbsp;Meng Wang,&nbsp;Yuchao Wang,&nbsp;Peiyao Yang,&nbsp;Danni Deng,&nbsp;Xinran Zheng,&nbsp;Jiabi Jiang,&nbsp;Haitao Zheng,&nbsp;Guozhao Fang,&nbsp;Yi Zeng*,&nbsp;Xiang Xiong and Yongpeng Lei*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c08610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electrochemical two-electron oxygen reduction reaction (2e<sup>–</sup> ORR) to produce hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is attractive, but poor H<sub>2</sub>O<sub>2</sub> selectivity and activity need to be overcome. Herein, a phosphorus-induced electron pump is demonstrated. The H<sub>2</sub>O<sub>2</sub> selectivity reaches &gt;90% (93.5% at 0.5 V) in the potential range of 0.2∼0.7 V. The Faradaic efficiency achieves 94.2% at 0.6 V. In situ Raman experiment and density functional theory calculation indicate that the O<sub>2</sub> adsorption and activation are enhanced. The *OOH intermediates are formed at a more positive potential. Furthermore, the universal mechanism of the electron pump is extended. At last, the potential to degrade antibiotics, <i>Escherichia coli</i>, etc., on site is confirmed. This work displays that the phosphorus-induced electron pump activates O<sub>2</sub>, which provides an insight into the electrocatalytic 2e<sup>–</sup> ORR.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 31\",\"pages\":\"28801–28812\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c08610\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c08610","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电化学双电子氧还原反应(2e- ORR)制备过氧化氢(H2O2)是有吸引力的,但需要克服H2O2选择性和活性差的问题。本文演示了一个磷诱导的电子泵。在0.2 ~ 0.7 V电位范围内,H2O2选择性达到>90% (0.5 V时为93.5%)。在0.6 V时,法拉第效率达到94.2%。原位拉曼实验和密度泛函理论计算表明,O2的吸附和活化都得到了增强。*OOH中间体形成电位更高。进一步扩展了电子泵的通用机理。最后,确定了其在现场降解抗生素、大肠杆菌等的潜力。这项工作表明,磷诱导的电子泵激活O2,这提供了对电催化2e- ORR的深入了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Phosphorus-Induced Electron Pump Enhances O2 Activation for Electrocatalytic H2O2 Production

Phosphorus-Induced Electron Pump Enhances O2 Activation for Electrocatalytic H2O2 Production

Electrochemical two-electron oxygen reduction reaction (2e ORR) to produce hydrogen peroxide (H2O2) is attractive, but poor H2O2 selectivity and activity need to be overcome. Herein, a phosphorus-induced electron pump is demonstrated. The H2O2 selectivity reaches >90% (93.5% at 0.5 V) in the potential range of 0.2∼0.7 V. The Faradaic efficiency achieves 94.2% at 0.6 V. In situ Raman experiment and density functional theory calculation indicate that the O2 adsorption and activation are enhanced. The *OOH intermediates are formed at a more positive potential. Furthermore, the universal mechanism of the electron pump is extended. At last, the potential to degrade antibiotics, Escherichia coli, etc., on site is confirmed. This work displays that the phosphorus-induced electron pump activates O2, which provides an insight into the electrocatalytic 2e ORR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信