基于信道关注和变分自编码器的超声图像去噪方法。

Taher Slimi, Emna Ben Baoues, Anouar Ben Khalifa
{"title":"基于信道关注和变分自编码器的超声图像去噪方法。","authors":"Taher Slimi, Emna Ben Baoues, Anouar Ben Khalifa","doi":"10.1615/CritRevBiomedEng.2025058842","DOIUrl":null,"url":null,"abstract":"<p><p>Speckle noise in ultrasound images compromises image quality and hinders diagnostic accuracy. Traditional ultrasound denoising methods often struggle to preserve anatomical details while effectively reducing noise, especially under high-noise conditions. In this study, we propose an innovative approach that integrates a lightweight channel attention mechanism (LCAM) within a convolutional variational autoencoder (CVAE) framework to enhance ultrasound image denoising. The proposed approach efficiently reduces speckle noise while maintaining essential anatomical features. Comprehensive evaluations across six diverse ultrasound datasets demonstrate that the LCAM-CVAE outperforms conventional denoising techniques in both subjective image quality and objective performance metrics, including peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), standard deviation in PSNR (SD-PSNR), standard deviation in SSIM (SD-SSIM), PSNR statistical relevance tests, and computational efficiency (CE). The LCAM-CVAE approach demonstrates exceptional performance, particularly under high-noise conditions, ensuring the preservation of key anatomical structures for accurate diagnosis. These results highlight the LCAM-CVAE approach as a robust and promising solution for ultrasound image denoising, with significant clinical potential to improve diagnostic quality in noisy environments.</p>","PeriodicalId":94308,"journal":{"name":"Critical reviews in biomedical engineering","volume":"53 3","pages":"47-76"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative Ultrasound Image Denoising Using Channel Attention and Variational Autoencoders.\",\"authors\":\"Taher Slimi, Emna Ben Baoues, Anouar Ben Khalifa\",\"doi\":\"10.1615/CritRevBiomedEng.2025058842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Speckle noise in ultrasound images compromises image quality and hinders diagnostic accuracy. Traditional ultrasound denoising methods often struggle to preserve anatomical details while effectively reducing noise, especially under high-noise conditions. In this study, we propose an innovative approach that integrates a lightweight channel attention mechanism (LCAM) within a convolutional variational autoencoder (CVAE) framework to enhance ultrasound image denoising. The proposed approach efficiently reduces speckle noise while maintaining essential anatomical features. Comprehensive evaluations across six diverse ultrasound datasets demonstrate that the LCAM-CVAE outperforms conventional denoising techniques in both subjective image quality and objective performance metrics, including peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), standard deviation in PSNR (SD-PSNR), standard deviation in SSIM (SD-SSIM), PSNR statistical relevance tests, and computational efficiency (CE). The LCAM-CVAE approach demonstrates exceptional performance, particularly under high-noise conditions, ensuring the preservation of key anatomical structures for accurate diagnosis. These results highlight the LCAM-CVAE approach as a robust and promising solution for ultrasound image denoising, with significant clinical potential to improve diagnostic quality in noisy environments.</p>\",\"PeriodicalId\":94308,\"journal\":{\"name\":\"Critical reviews in biomedical engineering\",\"volume\":\"53 3\",\"pages\":\"47-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevBiomedEng.2025058842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevBiomedEng.2025058842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

斑点噪声在超声图像损害图像质量和阻碍诊断的准确性。传统的超声去噪方法往往难以在保留解剖细节的同时有效地降低噪声,特别是在高噪声条件下。在这项研究中,我们提出了一种创新的方法,将轻量级通道注意机制(LCAM)集成在卷积变分自编码器(CVAE)框架中,以增强超声图像去噪。该方法有效地降低了散斑噪声,同时保持了基本的解剖特征。对6个不同超声数据集的综合评估表明,LCAM-CVAE在主观图像质量和客观性能指标上都优于传统的去噪技术,包括峰值信噪比(PSNR)、结构相似指数测量(SSIM)、PSNR标准差(SD-PSNR)、SSIM标准差(SD-SSIM)、PSNR统计相关性测试和计算效率(CE)。LCAM-CVAE方法表现出卓越的性能,特别是在高噪声条件下,确保了关键解剖结构的保存,以进行准确的诊断。这些结果突出了LCAM-CVAE方法作为超声图像去噪的强大且有前途的解决方案,具有显著的临床潜力,可以提高嘈杂环境下的诊断质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Innovative Ultrasound Image Denoising Using Channel Attention and Variational Autoencoders.

Speckle noise in ultrasound images compromises image quality and hinders diagnostic accuracy. Traditional ultrasound denoising methods often struggle to preserve anatomical details while effectively reducing noise, especially under high-noise conditions. In this study, we propose an innovative approach that integrates a lightweight channel attention mechanism (LCAM) within a convolutional variational autoencoder (CVAE) framework to enhance ultrasound image denoising. The proposed approach efficiently reduces speckle noise while maintaining essential anatomical features. Comprehensive evaluations across six diverse ultrasound datasets demonstrate that the LCAM-CVAE outperforms conventional denoising techniques in both subjective image quality and objective performance metrics, including peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), standard deviation in PSNR (SD-PSNR), standard deviation in SSIM (SD-SSIM), PSNR statistical relevance tests, and computational efficiency (CE). The LCAM-CVAE approach demonstrates exceptional performance, particularly under high-noise conditions, ensuring the preservation of key anatomical structures for accurate diagnosis. These results highlight the LCAM-CVAE approach as a robust and promising solution for ultrasound image denoising, with significant clinical potential to improve diagnostic quality in noisy environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信