人工智能协同H&E和IHC图像分析预测结直肠癌和乳腺癌的癌症生物标志物和生存结果。

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Yating Cheng, Norsang Lama, Ming Chen, Eghbal Amidi, Mohammadreza Ramzanpour, Md Ashequr Rahman, Joanne Xiu, Anthony Helmstetter, Lauren Dickman, Jennifer R Ribeiro, Hassan Ghani, Matthew Oberley, David Spetzler, George W Sledge
{"title":"人工智能协同H&E和IHC图像分析预测结直肠癌和乳腺癌的癌症生物标志物和生存结果。","authors":"Yating Cheng, Norsang Lama, Ming Chen, Eghbal Amidi, Mohammadreza Ramzanpour, Md Ashequr Rahman, Joanne Xiu, Anthony Helmstetter, Lauren Dickman, Jennifer R Ribeiro, Hassan Ghani, Matthew Oberley, David Spetzler, George W Sledge","doi":"10.1038/s43856-025-01045-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recent advancements in immunotherapy, particularly pembrolizumab, have shown promising results in treating metastatic colorectal cancer (CRC) and triple-negative breast cancer (TNBC). Accurate detection of predictive biomarkers, such as microsatellite instability (MSI)/mismatch repair deficiency (MMRd) and programmed death-ligand 1 (PD-L1), is key to efficacy of these treatments. Traditional methods like immunohistochemistry (IHC) and next-generation sequencing are effective but are labor intensive and require subjective interpretation.</p><p><strong>Methods: </strong>We developed a dual-modality transformer-based model for predicting MSI/MMRd and PD-L1 status using hematoxylin & eosin and IHC stained whole slide images. We evaluated the model using area under the receiver operating curve (AUROC). Time-on-treatment (TOT) and overall survival (OS) were derived from insurance claims and analyzed by Kaplan-Meier method. Hazard ratios (HR) were determined using the Cox proportional hazard model.</p><p><strong>Results: </strong>Our AI framework achieves clinical-grade performance, with AUROC exceeding 0.97 for MSI/MMRd prediction in CRC and 0.96 for PD-L1 prediction in breast cancer. Patients with biomarker-positive model predictions demonstrated prolonged TOT and OS when treated with pembrolizumab. For breast cancer patients, the model's predictions were superior to PD-L1 IHC in stratifying patients with improved outcomes on pembrolizumab, suggesting a reevaluation of existing PD-L1 status thresholds.</p><p><strong>Conclusions: </strong>This study promotes the integration of advanced AI tools in clinical pathology, aiming to enhance the precision and efficiency of cancer biomarker evaluation and offering a customizable framework for varied clinical scenarios. Our model enhances predictive accuracy, integrating features from both staining methods, and exhibits superior prognostic precision compared to current biomarker assessments.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"328"},"PeriodicalIF":5.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12317095/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synergistic H&E and IHC image analysis by AI predicts cancer biomarkers and survival outcomes in colorectal and breast cancer.\",\"authors\":\"Yating Cheng, Norsang Lama, Ming Chen, Eghbal Amidi, Mohammadreza Ramzanpour, Md Ashequr Rahman, Joanne Xiu, Anthony Helmstetter, Lauren Dickman, Jennifer R Ribeiro, Hassan Ghani, Matthew Oberley, David Spetzler, George W Sledge\",\"doi\":\"10.1038/s43856-025-01045-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Recent advancements in immunotherapy, particularly pembrolizumab, have shown promising results in treating metastatic colorectal cancer (CRC) and triple-negative breast cancer (TNBC). Accurate detection of predictive biomarkers, such as microsatellite instability (MSI)/mismatch repair deficiency (MMRd) and programmed death-ligand 1 (PD-L1), is key to efficacy of these treatments. Traditional methods like immunohistochemistry (IHC) and next-generation sequencing are effective but are labor intensive and require subjective interpretation.</p><p><strong>Methods: </strong>We developed a dual-modality transformer-based model for predicting MSI/MMRd and PD-L1 status using hematoxylin & eosin and IHC stained whole slide images. We evaluated the model using area under the receiver operating curve (AUROC). Time-on-treatment (TOT) and overall survival (OS) were derived from insurance claims and analyzed by Kaplan-Meier method. Hazard ratios (HR) were determined using the Cox proportional hazard model.</p><p><strong>Results: </strong>Our AI framework achieves clinical-grade performance, with AUROC exceeding 0.97 for MSI/MMRd prediction in CRC and 0.96 for PD-L1 prediction in breast cancer. Patients with biomarker-positive model predictions demonstrated prolonged TOT and OS when treated with pembrolizumab. For breast cancer patients, the model's predictions were superior to PD-L1 IHC in stratifying patients with improved outcomes on pembrolizumab, suggesting a reevaluation of existing PD-L1 status thresholds.</p><p><strong>Conclusions: </strong>This study promotes the integration of advanced AI tools in clinical pathology, aiming to enhance the precision and efficiency of cancer biomarker evaluation and offering a customizable framework for varied clinical scenarios. Our model enhances predictive accuracy, integrating features from both staining methods, and exhibits superior prognostic precision compared to current biomarker assessments.</p>\",\"PeriodicalId\":72646,\"journal\":{\"name\":\"Communications medicine\",\"volume\":\"5 1\",\"pages\":\"328\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12317095/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43856-025-01045-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-01045-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:最近免疫治疗的进展,特别是派姆单抗,在治疗转移性结直肠癌(CRC)和三阴性乳腺癌(TNBC)方面显示出有希望的结果。准确检测预测性生物标志物,如微卫星不稳定性(MSI)/错配修复缺陷(MMRd)和程序性死亡配体1 (PD-L1),是这些治疗效果的关键。传统的方法,如免疫组织化学(IHC)和下一代测序是有效的,但劳动密集,需要主观解释。方法:利用苏木精伊红和免疫组化染色的全片图像,建立了一种基于变压器的双模态模型,用于预测MSI/MMRd和PD-L1状态。我们使用受试者工作曲线下面积(AUROC)来评估模型。治疗时间(Time-on-treatment, TOT)和总生存期(overall survival, OS)来源于保险索赔,并采用Kaplan-Meier法进行分析。采用Cox比例风险模型确定风险比(HR)。结果:我们的AI框架达到了临床级性能,在CRC中预测MSI/MMRd的AUROC超过0.97,在乳腺癌中预测PD-L1的AUROC超过0.96。生物标志物阳性模型预测的患者在接受派姆单抗治疗时显示TOT和OS延长。对于乳腺癌患者,该模型的预测在派姆单抗改善预后的患者分层方面优于PD-L1 IHC,这表明需要重新评估现有的PD-L1状态阈值。结论:本研究促进了先进的人工智能工具在临床病理学中的整合,旨在提高癌症生物标志物评估的准确性和效率,并为不同的临床场景提供可定制的框架。我们的模型提高了预测准确性,整合了两种染色方法的特征,与目前的生物标志物评估相比,显示出更高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic H&E and IHC image analysis by AI predicts cancer biomarkers and survival outcomes in colorectal and breast cancer.

Background: Recent advancements in immunotherapy, particularly pembrolizumab, have shown promising results in treating metastatic colorectal cancer (CRC) and triple-negative breast cancer (TNBC). Accurate detection of predictive biomarkers, such as microsatellite instability (MSI)/mismatch repair deficiency (MMRd) and programmed death-ligand 1 (PD-L1), is key to efficacy of these treatments. Traditional methods like immunohistochemistry (IHC) and next-generation sequencing are effective but are labor intensive and require subjective interpretation.

Methods: We developed a dual-modality transformer-based model for predicting MSI/MMRd and PD-L1 status using hematoxylin & eosin and IHC stained whole slide images. We evaluated the model using area under the receiver operating curve (AUROC). Time-on-treatment (TOT) and overall survival (OS) were derived from insurance claims and analyzed by Kaplan-Meier method. Hazard ratios (HR) were determined using the Cox proportional hazard model.

Results: Our AI framework achieves clinical-grade performance, with AUROC exceeding 0.97 for MSI/MMRd prediction in CRC and 0.96 for PD-L1 prediction in breast cancer. Patients with biomarker-positive model predictions demonstrated prolonged TOT and OS when treated with pembrolizumab. For breast cancer patients, the model's predictions were superior to PD-L1 IHC in stratifying patients with improved outcomes on pembrolizumab, suggesting a reevaluation of existing PD-L1 status thresholds.

Conclusions: This study promotes the integration of advanced AI tools in clinical pathology, aiming to enhance the precision and efficiency of cancer biomarker evaluation and offering a customizable framework for varied clinical scenarios. Our model enhances predictive accuracy, integrating features from both staining methods, and exhibits superior prognostic precision compared to current biomarker assessments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信