{"title":"BMP9通过调节TGFβ和BMP信号通路减轻微重力相关的废用性骨质疏松症。","authors":"Haoyang Zhao, Mengfan Yang, Yujiao Liu, Xiaolin Tu, Gaohai Shao","doi":"10.1038/s41526-025-00510-y","DOIUrl":null,"url":null,"abstract":"<p><p>Disuse osteoporosis, caused by mechanical unloading, is linked to dysregulated TGFβ and BMP signaling. This study explores their roles and evaluates BMP9 as a potential therapy. A hindlimb unloading (HLU) mouse model was used to assess bone changes and signaling alterations. In vitro, a Rotary Cell Culture System (RCCS) with 3D printing simulated microgravity. BMP9 was overexpressed in bone marrow stromal cells (BMSCs) and osteocytes treated with TGFβ1. HLU mice showed reduced bone density, microstructural integrity, and dysregulated signaling (increased p-Smad2/3, decreased p-Smad1/5/8). BMP9 overexpression restored osteogenic differentiation in vitro and improved bone properties in vivo. However, RCCS failed to replicate osteogenic inhibition, likely due to shear stress. Despite challenges, BMP9 shows promise for treating disuse osteoporosis. Future research will refine vector specificity and reduce immunogenicity for clinical application.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"11 1","pages":"50"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316925/pdf/","citationCount":"0","resultStr":"{\"title\":\"BMP9 attenuates microgravity-related disuse osteoporosis by modulating TGFβ and BMP signaling.\",\"authors\":\"Haoyang Zhao, Mengfan Yang, Yujiao Liu, Xiaolin Tu, Gaohai Shao\",\"doi\":\"10.1038/s41526-025-00510-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Disuse osteoporosis, caused by mechanical unloading, is linked to dysregulated TGFβ and BMP signaling. This study explores their roles and evaluates BMP9 as a potential therapy. A hindlimb unloading (HLU) mouse model was used to assess bone changes and signaling alterations. In vitro, a Rotary Cell Culture System (RCCS) with 3D printing simulated microgravity. BMP9 was overexpressed in bone marrow stromal cells (BMSCs) and osteocytes treated with TGFβ1. HLU mice showed reduced bone density, microstructural integrity, and dysregulated signaling (increased p-Smad2/3, decreased p-Smad1/5/8). BMP9 overexpression restored osteogenic differentiation in vitro and improved bone properties in vivo. However, RCCS failed to replicate osteogenic inhibition, likely due to shear stress. Despite challenges, BMP9 shows promise for treating disuse osteoporosis. Future research will refine vector specificity and reduce immunogenicity for clinical application.</p>\",\"PeriodicalId\":54263,\"journal\":{\"name\":\"npj Microgravity\",\"volume\":\"11 1\",\"pages\":\"50\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316925/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Microgravity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41526-025-00510-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-025-00510-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
BMP9 attenuates microgravity-related disuse osteoporosis by modulating TGFβ and BMP signaling.
Disuse osteoporosis, caused by mechanical unloading, is linked to dysregulated TGFβ and BMP signaling. This study explores their roles and evaluates BMP9 as a potential therapy. A hindlimb unloading (HLU) mouse model was used to assess bone changes and signaling alterations. In vitro, a Rotary Cell Culture System (RCCS) with 3D printing simulated microgravity. BMP9 was overexpressed in bone marrow stromal cells (BMSCs) and osteocytes treated with TGFβ1. HLU mice showed reduced bone density, microstructural integrity, and dysregulated signaling (increased p-Smad2/3, decreased p-Smad1/5/8). BMP9 overexpression restored osteogenic differentiation in vitro and improved bone properties in vivo. However, RCCS failed to replicate osteogenic inhibition, likely due to shear stress. Despite challenges, BMP9 shows promise for treating disuse osteoporosis. Future research will refine vector specificity and reduce immunogenicity for clinical application.
npj MicrogravityPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍:
A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.