Elsje J. Burgers , Tamara Y. Danilyuk , Raju P. Sharma , Nadine Renner , Andreas Verlohner , Nicole Rocker , Philipp Ternes , Lukas S. Wijaya , Marcel Leist , Peter Bouwman , Franziska M. Zickgraf , Stefan Schildknecht , Bob van de Water , Joost B. Beltman
{"title":"数学模型揭示了化合物特异性应激途径的活性。","authors":"Elsje J. Burgers , Tamara Y. Danilyuk , Raju P. Sharma , Nadine Renner , Andreas Verlohner , Nicole Rocker , Philipp Ternes , Lukas S. Wijaya , Marcel Leist , Peter Bouwman , Franziska M. Zickgraf , Stefan Schildknecht , Bob van de Water , Joost B. Beltman","doi":"10.1016/j.tox.2025.154234","DOIUrl":null,"url":null,"abstract":"<div><div>Drug-induced liver injury (DILI) is a major problem for the drug development industry. It has been suggested that activation of stress pathways within cells is an important indicator of DILI. In this project, we aimed to develop a mathematical model of invoked stress responses by three compounds with high DILI liability: nitrofurantoin, diclofenac and ketoconazole. To this end, we used imaging data from HepG2 cells and cell-associated compound and intracellular glutathione measurements. We initially developed a model for the integrated and oxidative stress responses following nitrofurantoin exposure. Subsequently, we expanded this to simulate responses to diclofenac and ketoconazole. To apply the model to these compounds multiple parameters required recalibration, yet the structure of the model was unchanged. Our analysis shows that the magnitude of interactions between transcription factors and downstream targets can differ even when the activated pathways are the same.</div></div>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":"518 ","pages":"Article 154234"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modelling reveals compound-specific stress pathway activity\",\"authors\":\"Elsje J. Burgers , Tamara Y. Danilyuk , Raju P. Sharma , Nadine Renner , Andreas Verlohner , Nicole Rocker , Philipp Ternes , Lukas S. Wijaya , Marcel Leist , Peter Bouwman , Franziska M. Zickgraf , Stefan Schildknecht , Bob van de Water , Joost B. Beltman\",\"doi\":\"10.1016/j.tox.2025.154234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Drug-induced liver injury (DILI) is a major problem for the drug development industry. It has been suggested that activation of stress pathways within cells is an important indicator of DILI. In this project, we aimed to develop a mathematical model of invoked stress responses by three compounds with high DILI liability: nitrofurantoin, diclofenac and ketoconazole. To this end, we used imaging data from HepG2 cells and cell-associated compound and intracellular glutathione measurements. We initially developed a model for the integrated and oxidative stress responses following nitrofurantoin exposure. Subsequently, we expanded this to simulate responses to diclofenac and ketoconazole. To apply the model to these compounds multiple parameters required recalibration, yet the structure of the model was unchanged. Our analysis shows that the magnitude of interactions between transcription factors and downstream targets can differ even when the activated pathways are the same.</div></div>\",\"PeriodicalId\":23159,\"journal\":{\"name\":\"Toxicology\",\"volume\":\"518 \",\"pages\":\"Article 154234\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300483X25001933\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300483X25001933","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Drug-induced liver injury (DILI) is a major problem for the drug development industry. It has been suggested that activation of stress pathways within cells is an important indicator of DILI. In this project, we aimed to develop a mathematical model of invoked stress responses by three compounds with high DILI liability: nitrofurantoin, diclofenac and ketoconazole. To this end, we used imaging data from HepG2 cells and cell-associated compound and intracellular glutathione measurements. We initially developed a model for the integrated and oxidative stress responses following nitrofurantoin exposure. Subsequently, we expanded this to simulate responses to diclofenac and ketoconazole. To apply the model to these compounds multiple parameters required recalibration, yet the structure of the model was unchanged. Our analysis shows that the magnitude of interactions between transcription factors and downstream targets can differ even when the activated pathways are the same.
期刊介绍:
Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.