{"title":"一种优化的基于堆叠的TinyML模型,用于物联网网络中的攻击检测。","authors":"Anshika Sharma, Shalli Rani, Mohammad Shabaz","doi":"10.1371/journal.pone.0329227","DOIUrl":null,"url":null,"abstract":"<p><p>With the expansion of Internet of Things (IoT) devices, security is an important issue as attacks are constantly gaining more complex. Traditional attack detection methods in IoT systems have difficulty being able to process real-time and access limitations. To address these challenges, a stacking-based Tiny Machine Learning (TinyML) models has been proposed for attack detection in IoT networks. This ensures detection efficiently and without additional computational overhead. The experiments have been conducted using the publicly available ToN-IoT dataset, comprising a total of 461,008 labeled instances with 10 types of attacks categories. Some amount of data preprocessing has been done applying methods such as label encoding, feature selection, and data standardization. A stacking ensemble learning technique uses multiple models combining lightweight Decision Tree (DT) and small Neural Network (NN) to aggregate power of the system and generalize. The performance of the model is evaluated by accuracy, precision, recall, F1-score, specificity, and false positive rate (FPR). Experimental results demonstrate that the stacked TinyML model is superior to traditional ML methods in terms of efficiency and detection performance, and its accuracy rate is 99.98%. It has an average inference latency of 0.12 ms and an estimated power consumption of 0.01 mW.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 8","pages":"e0329227"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316202/pdf/","citationCount":"0","resultStr":"{\"title\":\"An optimized stacking-based TinyML model for attack detection in IoT networks.\",\"authors\":\"Anshika Sharma, Shalli Rani, Mohammad Shabaz\",\"doi\":\"10.1371/journal.pone.0329227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the expansion of Internet of Things (IoT) devices, security is an important issue as attacks are constantly gaining more complex. Traditional attack detection methods in IoT systems have difficulty being able to process real-time and access limitations. To address these challenges, a stacking-based Tiny Machine Learning (TinyML) models has been proposed for attack detection in IoT networks. This ensures detection efficiently and without additional computational overhead. The experiments have been conducted using the publicly available ToN-IoT dataset, comprising a total of 461,008 labeled instances with 10 types of attacks categories. Some amount of data preprocessing has been done applying methods such as label encoding, feature selection, and data standardization. A stacking ensemble learning technique uses multiple models combining lightweight Decision Tree (DT) and small Neural Network (NN) to aggregate power of the system and generalize. The performance of the model is evaluated by accuracy, precision, recall, F1-score, specificity, and false positive rate (FPR). Experimental results demonstrate that the stacked TinyML model is superior to traditional ML methods in terms of efficiency and detection performance, and its accuracy rate is 99.98%. It has an average inference latency of 0.12 ms and an estimated power consumption of 0.01 mW.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 8\",\"pages\":\"e0329227\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316202/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0329227\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0329227","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
An optimized stacking-based TinyML model for attack detection in IoT networks.
With the expansion of Internet of Things (IoT) devices, security is an important issue as attacks are constantly gaining more complex. Traditional attack detection methods in IoT systems have difficulty being able to process real-time and access limitations. To address these challenges, a stacking-based Tiny Machine Learning (TinyML) models has been proposed for attack detection in IoT networks. This ensures detection efficiently and without additional computational overhead. The experiments have been conducted using the publicly available ToN-IoT dataset, comprising a total of 461,008 labeled instances with 10 types of attacks categories. Some amount of data preprocessing has been done applying methods such as label encoding, feature selection, and data standardization. A stacking ensemble learning technique uses multiple models combining lightweight Decision Tree (DT) and small Neural Network (NN) to aggregate power of the system and generalize. The performance of the model is evaluated by accuracy, precision, recall, F1-score, specificity, and false positive rate (FPR). Experimental results demonstrate that the stacked TinyML model is superior to traditional ML methods in terms of efficiency and detection performance, and its accuracy rate is 99.98%. It has an average inference latency of 0.12 ms and an estimated power consumption of 0.01 mW.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage