基于机器学习的人工智能拉曼检测识别系统(AIRDIS)对耐甲氧西林金黄色葡萄球菌和耐碳青霉烯肺炎克雷伯菌拉曼光谱的预测。

IF 4.6 2区 医学 Q1 INFECTIOUS DISEASES
Hsiu-Hsien Lin , Yu-Tzu Lin , Chih-Hao Chen , Kun-Hao Tseng , Pang-Chien Hsu , Ya-Lun Wu , Wei-Cheng Chang , Nai-Shun Liao , Yi-Fan Chou , Chun-Yi Hsu , Yu-Hui Liao , Mao-Wang Ho , Shih-Sheng Chang , Po-Ren Hsueh , Der-Yang Cho
{"title":"基于机器学习的人工智能拉曼检测识别系统(AIRDIS)对耐甲氧西林金黄色葡萄球菌和耐碳青霉烯肺炎克雷伯菌拉曼光谱的预测。","authors":"Hsiu-Hsien Lin ,&nbsp;Yu-Tzu Lin ,&nbsp;Chih-Hao Chen ,&nbsp;Kun-Hao Tseng ,&nbsp;Pang-Chien Hsu ,&nbsp;Ya-Lun Wu ,&nbsp;Wei-Cheng Chang ,&nbsp;Nai-Shun Liao ,&nbsp;Yi-Fan Chou ,&nbsp;Chun-Yi Hsu ,&nbsp;Yu-Hui Liao ,&nbsp;Mao-Wang Ho ,&nbsp;Shih-Sheng Chang ,&nbsp;Po-Ren Hsueh ,&nbsp;Der-Yang Cho","doi":"10.1016/j.ijantimicag.2025.107587","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>Methicillin-resistant <em>Staphylococcus aureus</em> (MRSA) and carbapenem-resistant <em>Klebsiella pneumoniae</em> (CRKP) are two of the most important antibiotic-resistant bacteria. Early use of the correct treatment strategy can not only reduce patient mortality but also prevent the development of resistance. Although some rapid but costly techniques are available, routine workflows in clinical microbiology laboratories can sometimes take several days to deliver bacterial identification and resistance profiles. In this study, we developed a bacterial identification and resistance prediction system that combines Raman spectroscopy and machine learning to predict the MRSA and CRKP.</div></div><div><h3>Methods</h3><div>A total of 988 <em>S. aureus</em> isolates (including 513 MRSA) and 1053 <em>K. pneumoniae</em> isolates (including 517 CRKP) were collected. Of these, 266 <em>S. aureus</em> isolates and 285 <em>K. pneumoniae</em> isolates were used for training, while the remainder were used for validation.</div></div><div><h3>Results</h3><div>The system demonstrated high predictive performance, with accuracy and area under receiver operating characteristic (AUROC) values of 88% and 0.92 for MRSA prediction and 87% and 0.96 for CRKP prediction, respectively.</div></div><div><h3>Conclusions</h3><div>As a result, we confirmed the ability of machine learning to interpret Raman spectra for predicting resistant bacteria in clinical microbiology laboratories. This is the first and novel system validated with a large number of clinical isolates and may be incorporated into existing workflows.</div></div>","PeriodicalId":13818,"journal":{"name":"International Journal of Antimicrobial Agents","volume":"66 5","pages":"Article 107587"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of methicillin-resistant Staphylococcus aureus and carbapenem-resistant Klebsiella pneumoniae from Raman spectra by Artificial Intelligent Raman Detection and Identification System (AIRDIS) with machine learning\",\"authors\":\"Hsiu-Hsien Lin ,&nbsp;Yu-Tzu Lin ,&nbsp;Chih-Hao Chen ,&nbsp;Kun-Hao Tseng ,&nbsp;Pang-Chien Hsu ,&nbsp;Ya-Lun Wu ,&nbsp;Wei-Cheng Chang ,&nbsp;Nai-Shun Liao ,&nbsp;Yi-Fan Chou ,&nbsp;Chun-Yi Hsu ,&nbsp;Yu-Hui Liao ,&nbsp;Mao-Wang Ho ,&nbsp;Shih-Sheng Chang ,&nbsp;Po-Ren Hsueh ,&nbsp;Der-Yang Cho\",\"doi\":\"10.1016/j.ijantimicag.2025.107587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><div>Methicillin-resistant <em>Staphylococcus aureus</em> (MRSA) and carbapenem-resistant <em>Klebsiella pneumoniae</em> (CRKP) are two of the most important antibiotic-resistant bacteria. Early use of the correct treatment strategy can not only reduce patient mortality but also prevent the development of resistance. Although some rapid but costly techniques are available, routine workflows in clinical microbiology laboratories can sometimes take several days to deliver bacterial identification and resistance profiles. In this study, we developed a bacterial identification and resistance prediction system that combines Raman spectroscopy and machine learning to predict the MRSA and CRKP.</div></div><div><h3>Methods</h3><div>A total of 988 <em>S. aureus</em> isolates (including 513 MRSA) and 1053 <em>K. pneumoniae</em> isolates (including 517 CRKP) were collected. Of these, 266 <em>S. aureus</em> isolates and 285 <em>K. pneumoniae</em> isolates were used for training, while the remainder were used for validation.</div></div><div><h3>Results</h3><div>The system demonstrated high predictive performance, with accuracy and area under receiver operating characteristic (AUROC) values of 88% and 0.92 for MRSA prediction and 87% and 0.96 for CRKP prediction, respectively.</div></div><div><h3>Conclusions</h3><div>As a result, we confirmed the ability of machine learning to interpret Raman spectra for predicting resistant bacteria in clinical microbiology laboratories. This is the first and novel system validated with a large number of clinical isolates and may be incorporated into existing workflows.</div></div>\",\"PeriodicalId\":13818,\"journal\":{\"name\":\"International Journal of Antimicrobial Agents\",\"volume\":\"66 5\",\"pages\":\"Article 107587\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Antimicrobial Agents\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924857925001426\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antimicrobial Agents","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924857925001426","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

耐甲氧西林金黄色葡萄球菌(MRSA)和耐碳青霉烯肺炎克雷伯菌(CRKP)是两种最重要的抗生素耐药细菌。早期使用正确的治疗策略不仅可以降低患者死亡率,还可以防止耐药性的发展。虽然有一些快速但昂贵的技术可用,但临床微生物实验室的常规工作流程有时需要数天才能提供细菌鉴定和耐药性概况。在本研究中,我们开发了一种结合拉曼光谱和机器学习的细菌鉴定和耐药性预测系统来预测MRSA和CRKP。共收集到金黄色葡萄球菌988株(包括513株MRSA)和肺炎克雷伯菌1053株(包括517株CRKP)。其中,266株金黄色葡萄球菌和285株肺炎克雷伯菌用于培养,其余用于验证。该系统具有较高的预测性能,预测MRSA的准确度为88%,预测CRKP的准确度为87%,预测CRKP的准确度为0.96。因此,我们证实了机器学习在临床微生物学实验室解释拉曼光谱以预测耐药细菌的能力。这是第一个经过大量临床分离物验证的新型系统,可以纳入现有的工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Prediction of methicillin-resistant Staphylococcus aureus and carbapenem-resistant Klebsiella pneumoniae from Raman spectra by Artificial Intelligent Raman Detection and Identification System (AIRDIS) with machine learning

Prediction of methicillin-resistant Staphylococcus aureus and carbapenem-resistant Klebsiella pneumoniae from Raman spectra by Artificial Intelligent Raman Detection and Identification System (AIRDIS) with machine learning

Objectives

Methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Klebsiella pneumoniae (CRKP) are two of the most important antibiotic-resistant bacteria. Early use of the correct treatment strategy can not only reduce patient mortality but also prevent the development of resistance. Although some rapid but costly techniques are available, routine workflows in clinical microbiology laboratories can sometimes take several days to deliver bacterial identification and resistance profiles. In this study, we developed a bacterial identification and resistance prediction system that combines Raman spectroscopy and machine learning to predict the MRSA and CRKP.

Methods

A total of 988 S. aureus isolates (including 513 MRSA) and 1053 K. pneumoniae isolates (including 517 CRKP) were collected. Of these, 266 S. aureus isolates and 285 K. pneumoniae isolates were used for training, while the remainder were used for validation.

Results

The system demonstrated high predictive performance, with accuracy and area under receiver operating characteristic (AUROC) values of 88% and 0.92 for MRSA prediction and 87% and 0.96 for CRKP prediction, respectively.

Conclusions

As a result, we confirmed the ability of machine learning to interpret Raman spectra for predicting resistant bacteria in clinical microbiology laboratories. This is the first and novel system validated with a large number of clinical isolates and may be incorporated into existing workflows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
21.60
自引率
0.90%
发文量
176
审稿时长
36 days
期刊介绍: The International Journal of Antimicrobial Agents is a peer-reviewed publication offering comprehensive and current reference information on the physical, pharmacological, in vitro, and clinical properties of individual antimicrobial agents, covering antiviral, antiparasitic, antibacterial, and antifungal agents. The journal not only communicates new trends and developments through authoritative review articles but also addresses the critical issue of antimicrobial resistance, both in hospital and community settings. Published content includes solicited reviews by leading experts and high-quality original research papers in the specified fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信