双色外显子报告揭示了电压门控Ca2+通道剪接异构体在果蝇神经元中的多样性。

IF 2.7 3区 医学 Q3 NEUROSCIENCES
eNeuro Pub Date : 2025-08-21 Print Date: 2025-08-01 DOI:10.1523/ENEURO.0582-24.2025
Touhid Feghhi, Roberto X Hernandez, Olena Mahneva, Carlos D Oliva, Gregory T Macleod
{"title":"双色外显子报告揭示了电压门控Ca2+通道剪接异构体在果蝇神经元中的多样性。","authors":"Touhid Feghhi, Roberto X Hernandez, Olena Mahneva, Carlos D Oliva, Gregory T Macleod","doi":"10.1523/ENEURO.0582-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Every neuron contains the same genomic information, but its complement of proteins is the product of countless neuron-specific steps including pre-mRNA splicing. Despite advances in RNA sequencing techniques, pre-mRNA splicing biases that favor one isoform over another are largely inscrutable in live neurons in situ. Here, in <i>Drosophila</i>, we developed bichromatic fluorescent reporters to investigate alternative splicing of <i>cacophony</i> (<i>cac</i>)-a gene that codes the pore-forming α<sub>1</sub> subunit of the primary neuronal voltage-gated Ca<sup>2+</sup> channel (VGCC). These reporters revealed a neuron-specific pattern of exon biases, highly consistent from one animal to the next, suggesting that each neuron splices a unique and consistent portfolio of VGCC isoforms. Stereotypical patterns were observed within motor neurons and multidendritic sensory neurons of female larvae and also within mushroom body Kenyon cells of female adults. In a validation step, we demonstrated that exon splice bias reporting was not dependent on the choice of fluorophores. Additionally, functional properties of the female larval motor neuron terminals could be generally reconciled with the functional properties predicted for the reported exon bias. The application of this technology to a large gene such as <i>cac</i> provides a precedence for effective exon-reporter design for other <i>Drosophila</i> genes.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12370356/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bichromatic Exon-Reporters Reveal Voltage-Gated Ca<sup>2+</sup>-Channel Splice-Isoform Diversity across <i>Drosophila</i> Neurons In Vivo.\",\"authors\":\"Touhid Feghhi, Roberto X Hernandez, Olena Mahneva, Carlos D Oliva, Gregory T Macleod\",\"doi\":\"10.1523/ENEURO.0582-24.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Every neuron contains the same genomic information, but its complement of proteins is the product of countless neuron-specific steps including pre-mRNA splicing. Despite advances in RNA sequencing techniques, pre-mRNA splicing biases that favor one isoform over another are largely inscrutable in live neurons in situ. Here, in <i>Drosophila</i>, we developed bichromatic fluorescent reporters to investigate alternative splicing of <i>cacophony</i> (<i>cac</i>)-a gene that codes the pore-forming α<sub>1</sub> subunit of the primary neuronal voltage-gated Ca<sup>2+</sup> channel (VGCC). These reporters revealed a neuron-specific pattern of exon biases, highly consistent from one animal to the next, suggesting that each neuron splices a unique and consistent portfolio of VGCC isoforms. Stereotypical patterns were observed within motor neurons and multidendritic sensory neurons of female larvae and also within mushroom body Kenyon cells of female adults. In a validation step, we demonstrated that exon splice bias reporting was not dependent on the choice of fluorophores. Additionally, functional properties of the female larval motor neuron terminals could be generally reconciled with the functional properties predicted for the reported exon bias. The application of this technology to a large gene such as <i>cac</i> provides a precedence for effective exon-reporter design for other <i>Drosophila</i> genes.</p>\",\"PeriodicalId\":11617,\"journal\":{\"name\":\"eNeuro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12370356/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eNeuro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/ENEURO.0582-24.2025\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0582-24.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

每个神经元包含相同的基因组信息,但其蛋白质补体是无数神经元特异性步骤的产物,包括前mrna剪接。尽管RNA测序技术取得了进步,但在原位活神经元中,mrna前剪接偏向于一种同种异构体的现象在很大程度上是不可理解的。在果蝇中,我们开发了双色荧光报告器来研究cacophony (cac)的选择性剪接——cac是一种编码初级神经元电压门控Ca2+通道(VGCC)的成孔α1亚基的基因。这些报告揭示了一种神经元特异性的外显子偏差模式,这种模式在不同动物之间高度一致,这表明每个神经元拼接的VGCC同种异构体组合都是独特而一致的。在雌性幼虫的运动神经元和多树突状感觉神经元中,以及在雌性成虫的蘑菇体Kenyon细胞中,都观察到刻板模式。在验证步骤中,我们证明外显子剪接偏倚报告不依赖于荧光团的选择。此外,雌性幼虫运动神经元终端的功能特性通常与外显子偏倚预测的功能特性相一致。该技术在cac等大基因上的应用,为有效设计果蝇其他基因的外显子报告子提供了先例。Ca2+离子是神经系统中普遍存在的信使,其通过细胞膜的通道在神经系统功能中起着重要作用。在果蝇中,与人类一样,编码Ca2+通道的基因通过选择性基因剪接过程产生不同的Ca2+通道变体。然而,在活组织中的单个细胞水平上,剪接过程在很大程度上是不可理解的,这使得很难阐明健康或疾病中选择性剪接的后果。在这里,在果蝇大脑中,我们展示了一种技术,根据剪接过程的偏差表达不同颜色的荧光蛋白,在活体动物的不同细胞中产生不同的Ca2+通道变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bichromatic Exon-Reporters Reveal Voltage-Gated Ca2+-Channel Splice-Isoform Diversity across Drosophila Neurons In Vivo.

Every neuron contains the same genomic information, but its complement of proteins is the product of countless neuron-specific steps including pre-mRNA splicing. Despite advances in RNA sequencing techniques, pre-mRNA splicing biases that favor one isoform over another are largely inscrutable in live neurons in situ. Here, in Drosophila, we developed bichromatic fluorescent reporters to investigate alternative splicing of cacophony (cac)-a gene that codes the pore-forming α1 subunit of the primary neuronal voltage-gated Ca2+ channel (VGCC). These reporters revealed a neuron-specific pattern of exon biases, highly consistent from one animal to the next, suggesting that each neuron splices a unique and consistent portfolio of VGCC isoforms. Stereotypical patterns were observed within motor neurons and multidendritic sensory neurons of female larvae and also within mushroom body Kenyon cells of female adults. In a validation step, we demonstrated that exon splice bias reporting was not dependent on the choice of fluorophores. Additionally, functional properties of the female larval motor neuron terminals could be generally reconciled with the functional properties predicted for the reported exon bias. The application of this technology to a large gene such as cac provides a precedence for effective exon-reporter design for other Drosophila genes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信