Yi Zhang , Chen Ji , Xingtian Wang , Bin Qiu , Huaiyu Chen
{"title":"基于铂纳米粒子/石墨炔复合物的尿酸电化学检测","authors":"Yi Zhang , Chen Ji , Xingtian Wang , Bin Qiu , Huaiyu Chen","doi":"10.1016/j.elecom.2025.108006","DOIUrl":null,"url":null,"abstract":"<div><div>The development of cost-effective and high-performance electrochemical sensors for uric acid (UA) detection is critical due to its role as a key biomarker in disease diagnosis. This study presents an innovative sensor based on platinum nanoparticle (Pt NPs) decorated graphdiyne (GDY) nanohybrid (denoted as Pt NPs/GDY), fabricated via a facile electroless deposition method. The hybrid material capitalizes on the synergistic effects of GDY's π-electron-rich structure - enhancing target affinity through π-π stacking, and Pt NPs' dual functionality as conductivity boosters and catalytic activators. Electrochemical evaluations revealed that the Pt NPs/GDY-modified glassy carbon electrode (GCE) outperforms conventional GDY/GCE and bare GCE, achieving a broad linear range (0.1–7.5 μM) and an ultralow detection limit (30 nM). The sensor also demonstrated exceptional reproducibility, long-term stability, and selectivity against common interferents, validated by successful UA quantification in human urine samples (92.8–98.5 % recovery).</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"179 ","pages":"Article 108006"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical detection of uric acid based on platinum nanoparticles/graphdiyne hybrids\",\"authors\":\"Yi Zhang , Chen Ji , Xingtian Wang , Bin Qiu , Huaiyu Chen\",\"doi\":\"10.1016/j.elecom.2025.108006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of cost-effective and high-performance electrochemical sensors for uric acid (UA) detection is critical due to its role as a key biomarker in disease diagnosis. This study presents an innovative sensor based on platinum nanoparticle (Pt NPs) decorated graphdiyne (GDY) nanohybrid (denoted as Pt NPs/GDY), fabricated via a facile electroless deposition method. The hybrid material capitalizes on the synergistic effects of GDY's π-electron-rich structure - enhancing target affinity through π-π stacking, and Pt NPs' dual functionality as conductivity boosters and catalytic activators. Electrochemical evaluations revealed that the Pt NPs/GDY-modified glassy carbon electrode (GCE) outperforms conventional GDY/GCE and bare GCE, achieving a broad linear range (0.1–7.5 μM) and an ultralow detection limit (30 nM). The sensor also demonstrated exceptional reproducibility, long-term stability, and selectivity against common interferents, validated by successful UA quantification in human urine samples (92.8–98.5 % recovery).</div></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"179 \",\"pages\":\"Article 108006\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248125001468\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125001468","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Electrochemical detection of uric acid based on platinum nanoparticles/graphdiyne hybrids
The development of cost-effective and high-performance electrochemical sensors for uric acid (UA) detection is critical due to its role as a key biomarker in disease diagnosis. This study presents an innovative sensor based on platinum nanoparticle (Pt NPs) decorated graphdiyne (GDY) nanohybrid (denoted as Pt NPs/GDY), fabricated via a facile electroless deposition method. The hybrid material capitalizes on the synergistic effects of GDY's π-electron-rich structure - enhancing target affinity through π-π stacking, and Pt NPs' dual functionality as conductivity boosters and catalytic activators. Electrochemical evaluations revealed that the Pt NPs/GDY-modified glassy carbon electrode (GCE) outperforms conventional GDY/GCE and bare GCE, achieving a broad linear range (0.1–7.5 μM) and an ultralow detection limit (30 nM). The sensor also demonstrated exceptional reproducibility, long-term stability, and selectivity against common interferents, validated by successful UA quantification in human urine samples (92.8–98.5 % recovery).
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.