基于同步相量数据贝叶斯推理的电力系统振荡参数辨识

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Junfeng Duan;Wenxuan Yao
{"title":"基于同步相量数据贝叶斯推理的电力系统振荡参数辨识","authors":"Junfeng Duan;Wenxuan Yao","doi":"10.1109/JSEN.2025.3580084","DOIUrl":null,"url":null,"abstract":"This article presents a novel Bayesian inference method based on phasor measurement unit (PMU) data for identifying power system oscillation parameters. By leveraging synchronized data, the proposed method captures the dynamic behavior of the power system in real time. The approach integrates variational mode decomposition (VMD) and fast Fourier transform (FFT) to efficiently separate and identify oscillation modes, which enhances the initial setup for Bayesian inference. Using no-u-turn sampler (NUTS) sampling, the method estimates the modal parameters, including amplitude, damping factor, and frequency, while quantifying their uncertainties. Validations with both simulated and real power system data demonstrate that the proposed method effectively identifies oscillation parameters with high accuracy. This work provides a robust tool for the real-time monitoring and dynamic analysis of power system oscillations, offering improvements in accuracy and responsiveness over traditional methods.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 15","pages":"28984-28993"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter Identification for Power System Oscillations via Bayesian Inference of Synchrophasor Data\",\"authors\":\"Junfeng Duan;Wenxuan Yao\",\"doi\":\"10.1109/JSEN.2025.3580084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a novel Bayesian inference method based on phasor measurement unit (PMU) data for identifying power system oscillation parameters. By leveraging synchronized data, the proposed method captures the dynamic behavior of the power system in real time. The approach integrates variational mode decomposition (VMD) and fast Fourier transform (FFT) to efficiently separate and identify oscillation modes, which enhances the initial setup for Bayesian inference. Using no-u-turn sampler (NUTS) sampling, the method estimates the modal parameters, including amplitude, damping factor, and frequency, while quantifying their uncertainties. Validations with both simulated and real power system data demonstrate that the proposed method effectively identifies oscillation parameters with high accuracy. This work provides a robust tool for the real-time monitoring and dynamic analysis of power system oscillations, offering improvements in accuracy and responsiveness over traditional methods.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 15\",\"pages\":\"28984-28993\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11048408/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11048408/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于相量测量单元(PMU)数据的贝叶斯推理方法,用于电力系统振荡参数辨识。该方法利用同步数据,实时捕捉电力系统的动态行为。该方法将变分模态分解(VMD)和快速傅里叶变换(FFT)相结合,有效地分离和识别振动模态,增强了贝叶斯推理的初始设置。该方法采用无掉头采样器(NUTS)采样,估计模态参数,包括振幅、阻尼因子和频率,同时量化它们的不确定性。仿真和实际电力系统数据验证表明,该方法能有效识别振荡参数,具有较高的精度。这项工作为电力系统振荡的实时监测和动态分析提供了一个强大的工具,比传统方法提供了准确性和响应性的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Identification for Power System Oscillations via Bayesian Inference of Synchrophasor Data
This article presents a novel Bayesian inference method based on phasor measurement unit (PMU) data for identifying power system oscillation parameters. By leveraging synchronized data, the proposed method captures the dynamic behavior of the power system in real time. The approach integrates variational mode decomposition (VMD) and fast Fourier transform (FFT) to efficiently separate and identify oscillation modes, which enhances the initial setup for Bayesian inference. Using no-u-turn sampler (NUTS) sampling, the method estimates the modal parameters, including amplitude, damping factor, and frequency, while quantifying their uncertainties. Validations with both simulated and real power system data demonstrate that the proposed method effectively identifies oscillation parameters with high accuracy. This work provides a robust tool for the real-time monitoring and dynamic analysis of power system oscillations, offering improvements in accuracy and responsiveness over traditional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信