放电速率驱动的Li2O2生长在固态Li - O2电池中显示出非常规的形态趋势

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaozhou Huang, Matthew Li, Yanan Gao, Moon Gyu Park, Shoichi Matsuda, Khalil Amine
{"title":"放电速率驱动的Li2O2生长在固态Li - O2电池中显示出非常规的形态趋势","authors":"Xiaozhou Huang,&nbsp;Matthew Li,&nbsp;Yanan Gao,&nbsp;Moon Gyu Park,&nbsp;Shoichi Matsuda,&nbsp;Khalil Amine","doi":"10.1002/anie.202507967","DOIUrl":null,"url":null,"abstract":"<p>Solid-state lithium oxygen batteries (LOBs) are known for their enhanced safety, higher electrochemical stability, and improved energy density compared to liquid-state LOBs. However, the investigation of solid-state LOBs is limited with little understanding of their discharge and charge processes. In this work, a polymer-based solid-state LOB is used to investigate the effect of discharge rate on lithium peroxide (Li<sub>2</sub>O<sub>2</sub>) formation, the oxygen evolution reaction (OER), and cycle performance. Notably, we observe a counterintuitive trend: Li<sub>2</sub>O<sub>2</sub> particle size increases with increasing discharge current density, in contrast to liquid systems. This behavior arises from inherent space charge layers that restrict Li⁺ transport under high current, and spatially heterogeneous active sites at the solid electrolyte–cathode interface, directly evidenced by small angle X-ray scattering (SAXS), which govern nucleation accessibility and promote site-selective Li<sub>2</sub>O<sub>2</sub> growth. Furthermore, higher current densities improve ORR and OER efficiency but accelerate anode degradation, while lower currents promote side reactions. These opposing effects result in a trade-off that defines an optimal discharge rate (0.1 mA cm⁻<sup>2</sup>) for maximizing cycle life. This study provides a new mechanistic perspective on discharge-driven processes in solid-state LOBs and offers practical guidelines for performance optimization in future high-energy battery systems.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 37","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202507967","citationCount":"0","resultStr":"{\"title\":\"Discharge Rate-Driven Li2O2 Growth Exhibits Unconventional Morphology Trends in Solid-State Li-O2 Batteries\",\"authors\":\"Xiaozhou Huang,&nbsp;Matthew Li,&nbsp;Yanan Gao,&nbsp;Moon Gyu Park,&nbsp;Shoichi Matsuda,&nbsp;Khalil Amine\",\"doi\":\"10.1002/anie.202507967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solid-state lithium oxygen batteries (LOBs) are known for their enhanced safety, higher electrochemical stability, and improved energy density compared to liquid-state LOBs. However, the investigation of solid-state LOBs is limited with little understanding of their discharge and charge processes. In this work, a polymer-based solid-state LOB is used to investigate the effect of discharge rate on lithium peroxide (Li<sub>2</sub>O<sub>2</sub>) formation, the oxygen evolution reaction (OER), and cycle performance. Notably, we observe a counterintuitive trend: Li<sub>2</sub>O<sub>2</sub> particle size increases with increasing discharge current density, in contrast to liquid systems. This behavior arises from inherent space charge layers that restrict Li⁺ transport under high current, and spatially heterogeneous active sites at the solid electrolyte–cathode interface, directly evidenced by small angle X-ray scattering (SAXS), which govern nucleation accessibility and promote site-selective Li<sub>2</sub>O<sub>2</sub> growth. Furthermore, higher current densities improve ORR and OER efficiency but accelerate anode degradation, while lower currents promote side reactions. These opposing effects result in a trade-off that defines an optimal discharge rate (0.1 mA cm⁻<sup>2</sup>) for maximizing cycle life. This study provides a new mechanistic perspective on discharge-driven processes in solid-state LOBs and offers practical guidelines for performance optimization in future high-energy battery systems.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 37\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202507967\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202507967\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202507967","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

与液态锂氧电池相比,固态锂氧电池(lob)以其更高的安全性、更高的电化学稳定性和更高的能量密度而闻名。然而,由于对其放电和充电过程的了解很少,对固态lob的研究受到限制。在这项工作中,使用聚合物基固态LOB来研究放电速率对过氧化锂(Li2O2)形成、析氧反应(OER)和循环性能的影响。值得注意的是,我们观察到一个反直觉的趋势:与液体系统相比,Li2O2颗粒尺寸随着放电电流密度的增加而增加。这种行为源于固有的空间电荷层,它限制了Li +在大电流下的传输,以及固体电解质-阴极界面上的空间非均质活性位点,小角X射线散射(SAXS)直接证明了这一点,它控制了成核可及性并促进了Li2O2的选择性生长。此外,较高的电流密度提高了ORR和OER效率,但加速了阳极的降解,而较低的电流密度则促进了副反应。这些相反的影响导致权衡,定义了最佳放电率(0.1毫安厘米⁻2),以最大限度地延长循环寿命。该研究为固态lob放电驱动过程提供了新的机理视角,并为未来高能电池系统的性能优化提供了实用指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Discharge Rate-Driven Li2O2 Growth Exhibits Unconventional Morphology Trends in Solid-State Li-O2 Batteries

Discharge Rate-Driven Li2O2 Growth Exhibits Unconventional Morphology Trends in Solid-State Li-O2 Batteries

Solid-state lithium oxygen batteries (LOBs) are known for their enhanced safety, higher electrochemical stability, and improved energy density compared to liquid-state LOBs. However, the investigation of solid-state LOBs is limited with little understanding of their discharge and charge processes. In this work, a polymer-based solid-state LOB is used to investigate the effect of discharge rate on lithium peroxide (Li2O2) formation, the oxygen evolution reaction (OER), and cycle performance. Notably, we observe a counterintuitive trend: Li2O2 particle size increases with increasing discharge current density, in contrast to liquid systems. This behavior arises from inherent space charge layers that restrict Li⁺ transport under high current, and spatially heterogeneous active sites at the solid electrolyte–cathode interface, directly evidenced by small angle X-ray scattering (SAXS), which govern nucleation accessibility and promote site-selective Li2O2 growth. Furthermore, higher current densities improve ORR and OER efficiency but accelerate anode degradation, while lower currents promote side reactions. These opposing effects result in a trade-off that defines an optimal discharge rate (0.1 mA cm⁻2) for maximizing cycle life. This study provides a new mechanistic perspective on discharge-driven processes in solid-state LOBs and offers practical guidelines for performance optimization in future high-energy battery systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信