基于高效阴离子交换膜的碱性水和模拟碱性海水电解的定制界面复合膜

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yuhui Gong, Yuanman Ni, Tian Lan, Han Song, Hao Zhang, Shujuan Wang, Miaomiao Liu, Tongshuai Wang, Jian-Qiang Wang and Linjuan Zhang
{"title":"基于高效阴离子交换膜的碱性水和模拟碱性海水电解的定制界面复合膜","authors":"Yuhui Gong, Yuanman Ni, Tian Lan, Han Song, Hao Zhang, Shujuan Wang, Miaomiao Liu, Tongshuai Wang, Jian-Qiang Wang and Linjuan Zhang","doi":"10.1039/D5TA05372B","DOIUrl":null,"url":null,"abstract":"<p >Hydrogen production <em>via</em> water electrolysis is considered a cornerstone technology for building a sustainable and carbon-free energy system. However, current electrolysis technologies face critical membrane-related issues, especially in seawater environments, such as high ionic resistance, poor mechanical properties, and low selectivity towards chlorides. Here, we develop a reinforced composite membrane (RCM) featuring a chloride-blocking surface layer and PTFE support. The RCM exhibits low Cl<small><sup>−</sup></small> permeability (1.03 × 10<small><sup>−6</sup></small> cm<small><sup>2</sup></small> s<small><sup>−1</sup></small>), over ten times lower than commercial membranes, while maintaining high hydroxide conductivity (118.03 mS cm<small><sup>−1</sup></small>) and low swelling (3.52%). It delivers excellent performance in both anion exchange membrane water electrolysis (AEMWE) and asymmetrically fed seawater electrolysis (SWE), achieving 1.68 V at 1 A cm<small><sup>−2</sup></small> (80 °C) in AEMWE and exceptional Cl<small><sup>−</sup></small>/OH<small><sup>−</sup></small> selectivity in SWE. Long-term operation tests show negligible performance degradation over 500 hours under both operation conditions. To the best of our knowledge, this is the first report of a membrane specifically engineered for asymmetrically fed SWE, addressing the critical challenges of chloride crossover and membrane deformation. Furthermore, the RCM's high dimensional stability and facile fabrication conditions enable scalable integration with functional nanomaterials (<em>e.g.</em>, NiFe-LDHs, rGO and Pt/C NPs), while minimizing the risk of nanoparticle detachment. This work establishes a versatile membrane design framework for advanced electrolysis systems and potential applications in related fields.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 34","pages":" 28546-28558"},"PeriodicalIF":9.5000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta05372b?page=search","citationCount":"0","resultStr":"{\"title\":\"Composite membranes with tailored interfaces for high-efficiency anion exchange membrane-based alkaline water and simulated alkaline seawater electrolysis\",\"authors\":\"Yuhui Gong, Yuanman Ni, Tian Lan, Han Song, Hao Zhang, Shujuan Wang, Miaomiao Liu, Tongshuai Wang, Jian-Qiang Wang and Linjuan Zhang\",\"doi\":\"10.1039/D5TA05372B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hydrogen production <em>via</em> water electrolysis is considered a cornerstone technology for building a sustainable and carbon-free energy system. However, current electrolysis technologies face critical membrane-related issues, especially in seawater environments, such as high ionic resistance, poor mechanical properties, and low selectivity towards chlorides. Here, we develop a reinforced composite membrane (RCM) featuring a chloride-blocking surface layer and PTFE support. The RCM exhibits low Cl<small><sup>−</sup></small> permeability (1.03 × 10<small><sup>−6</sup></small> cm<small><sup>2</sup></small> s<small><sup>−1</sup></small>), over ten times lower than commercial membranes, while maintaining high hydroxide conductivity (118.03 mS cm<small><sup>−1</sup></small>) and low swelling (3.52%). It delivers excellent performance in both anion exchange membrane water electrolysis (AEMWE) and asymmetrically fed seawater electrolysis (SWE), achieving 1.68 V at 1 A cm<small><sup>−2</sup></small> (80 °C) in AEMWE and exceptional Cl<small><sup>−</sup></small>/OH<small><sup>−</sup></small> selectivity in SWE. Long-term operation tests show negligible performance degradation over 500 hours under both operation conditions. To the best of our knowledge, this is the first report of a membrane specifically engineered for asymmetrically fed SWE, addressing the critical challenges of chloride crossover and membrane deformation. Furthermore, the RCM's high dimensional stability and facile fabrication conditions enable scalable integration with functional nanomaterials (<em>e.g.</em>, NiFe-LDHs, rGO and Pt/C NPs), while minimizing the risk of nanoparticle detachment. This work establishes a versatile membrane design framework for advanced electrolysis systems and potential applications in related fields.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 34\",\"pages\":\" 28546-28558\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta05372b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta05372b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta05372b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过水电解制氢被认为是建立可持续和无碳能源系统的基石技术。然而,目前的电解技术面临着与膜相关的关键问题,特别是在海水环境中,例如高离子电阻,较差的机械性能以及对氯化物的低选择性。在这里,我们开发了一种增强复合膜(RCM),具有氯化物阻挡表面层和聚四氟乙烯支撑。RCM表现出低Cl -通透性(1.03 × 10⁻6 cm2·s-1),比商用膜低十倍以上,同时保持高氢氧化物电导率(118.03 mS·cm-1)和低膨胀(3.52%)。它在阴离子交换膜电解(AEMWE)和不对称进水海水电解(SWE)中均具有优异的性能,AEMWE在1 A·cm-2(80℃)条件下达到1.68 V, SWE具有优异的Cl-/OH-选择性。长期运行测试表明,在两种运行条件下,超过500小时的性能下降可以忽略不计。据我们所知,这是第一份专门针对非对称馈送SWE设计的膜的报告,解决了氯化物交叉和膜变形的关键挑战。此外,RCM的高尺寸稳定性和易于制造的条件使其能够与功能纳米材料(如nfe - ldhs, rGO, Pt/C NPs)进行可扩展集成,同时最大限度地降低纳米颗粒脱离的风险。这项工作为先进的电解系统和相关领域的潜在应用建立了一个通用的膜设计框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Composite membranes with tailored interfaces for high-efficiency anion exchange membrane-based alkaline water and simulated alkaline seawater electrolysis

Composite membranes with tailored interfaces for high-efficiency anion exchange membrane-based alkaline water and simulated alkaline seawater electrolysis

Hydrogen production via water electrolysis is considered a cornerstone technology for building a sustainable and carbon-free energy system. However, current electrolysis technologies face critical membrane-related issues, especially in seawater environments, such as high ionic resistance, poor mechanical properties, and low selectivity towards chlorides. Here, we develop a reinforced composite membrane (RCM) featuring a chloride-blocking surface layer and PTFE support. The RCM exhibits low Cl permeability (1.03 × 10−6 cm2 s−1), over ten times lower than commercial membranes, while maintaining high hydroxide conductivity (118.03 mS cm−1) and low swelling (3.52%). It delivers excellent performance in both anion exchange membrane water electrolysis (AEMWE) and asymmetrically fed seawater electrolysis (SWE), achieving 1.68 V at 1 A cm−2 (80 °C) in AEMWE and exceptional Cl/OH selectivity in SWE. Long-term operation tests show negligible performance degradation over 500 hours under both operation conditions. To the best of our knowledge, this is the first report of a membrane specifically engineered for asymmetrically fed SWE, addressing the critical challenges of chloride crossover and membrane deformation. Furthermore, the RCM's high dimensional stability and facile fabrication conditions enable scalable integration with functional nanomaterials (e.g., NiFe-LDHs, rGO and Pt/C NPs), while minimizing the risk of nanoparticle detachment. This work establishes a versatile membrane design framework for advanced electrolysis systems and potential applications in related fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信