一种嵌入nis2 /MoSe2微超级电容器的光致高能放大微线。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shumile Ahmed Siddiqui, Sunil Batesar, Harini Em, Subhabrata Das, Mohd Afshan, Seema Rani, Daya Rani, Nikita Chaudhary, Mansi Pahuja, Verma Bunty Sardar, Ambesh Dixit and Kaushik Ghosh*, 
{"title":"一种嵌入nis2 /MoSe2微超级电容器的光致高能放大微线。","authors":"Shumile Ahmed Siddiqui,&nbsp;Sunil Batesar,&nbsp;Harini Em,&nbsp;Subhabrata Das,&nbsp;Mohd Afshan,&nbsp;Seema Rani,&nbsp;Daya Rani,&nbsp;Nikita Chaudhary,&nbsp;Mansi Pahuja,&nbsp;Verma Bunty Sardar,&nbsp;Ambesh Dixit and Kaushik Ghosh*,&nbsp;","doi":"10.1021/acs.nanolett.5c03238","DOIUrl":null,"url":null,"abstract":"<p >Microsupercapacitors (MSCs) have emerged as promising miniaturized energy-storage devices for self-powered electronics. However, their practical adoption is hindered by insufficient energy density, poor stability, and short lifespan, necessitating solutions for improved practicability. Herein, we report a novel microwire embedded NiSe<sub>2</sub>/MoSe<sub>2</sub> (NMS) heterostructure MSC that addresses these challenges through photoenhanced energy storage. The device showcases a remarkable performance with a volumetric capacitance of ∼1014 F cm<sup>–3</sup>, an energy density of ∼140 mWh cm<sup>–3</sup>, and a power density of ∼1.6 W cm<sup>–3</sup>. Density functional theory calculations reveal 33-fold higher quantum capacitance and 16-fold lower OH<sup>–</sup> ion adsorption energy compared to pristine monometallic counterparts. Notably, the device powers a red light-emitting diode for 3 min after 1 min of charging, supports a healthcare monitoring device for up to 6 h, and retains ∼100% capacitance over 60000 cycles with 95% Columbic efficiency. Overall, this strategy offers a viable pathway to improve the MSC performance for next-generation microelectronics and biomedical applications.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 32","pages":"12407–12413"},"PeriodicalIF":9.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Microwire Embedded with a NiSe2/MoSe2 Microsupercapacitor with Photoinduced Ultrahigh-Energy Amplification\",\"authors\":\"Shumile Ahmed Siddiqui,&nbsp;Sunil Batesar,&nbsp;Harini Em,&nbsp;Subhabrata Das,&nbsp;Mohd Afshan,&nbsp;Seema Rani,&nbsp;Daya Rani,&nbsp;Nikita Chaudhary,&nbsp;Mansi Pahuja,&nbsp;Verma Bunty Sardar,&nbsp;Ambesh Dixit and Kaushik Ghosh*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c03238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Microsupercapacitors (MSCs) have emerged as promising miniaturized energy-storage devices for self-powered electronics. However, their practical adoption is hindered by insufficient energy density, poor stability, and short lifespan, necessitating solutions for improved practicability. Herein, we report a novel microwire embedded NiSe<sub>2</sub>/MoSe<sub>2</sub> (NMS) heterostructure MSC that addresses these challenges through photoenhanced energy storage. The device showcases a remarkable performance with a volumetric capacitance of ∼1014 F cm<sup>–3</sup>, an energy density of ∼140 mWh cm<sup>–3</sup>, and a power density of ∼1.6 W cm<sup>–3</sup>. Density functional theory calculations reveal 33-fold higher quantum capacitance and 16-fold lower OH<sup>–</sup> ion adsorption energy compared to pristine monometallic counterparts. Notably, the device powers a red light-emitting diode for 3 min after 1 min of charging, supports a healthcare monitoring device for up to 6 h, and retains ∼100% capacitance over 60000 cycles with 95% Columbic efficiency. Overall, this strategy offers a viable pathway to improve the MSC performance for next-generation microelectronics and biomedical applications.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 32\",\"pages\":\"12407–12413\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03238\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03238","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

微型超级电容器(MSCs)已成为一种有前途的小型自供电电子储能装置。然而,它们的实际应用受到能量密度不足、稳定性差和寿命短的阻碍,需要解决方案来提高实用性。在此,我们报告了一种新型的微线嵌入nis2 /MoSe2 (NMS)异质结构MSC,通过光增强储能解决了这些挑战。该器件的体积电容为~ 1014 F cm-3,能量密度为~ 140 mWh cm-3,功率密度为~ 1.6 W cm-3,具有卓越的性能。密度泛函理论计算表明,与原始的单金属材料相比,量子电容高33倍,OH离子吸附能低16倍。值得注意的是,该设备在充电1分钟后为红色发光二极管供电3分钟,支持医疗监测设备长达6小时,并在60000次循环中保持100%的电容,哥伦比亚效率为95%。总体而言,该策略为提高下一代微电子和生物医学应用的MSC性能提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Microwire Embedded with a NiSe2/MoSe2 Microsupercapacitor with Photoinduced Ultrahigh-Energy Amplification

A Microwire Embedded with a NiSe2/MoSe2 Microsupercapacitor with Photoinduced Ultrahigh-Energy Amplification

Microsupercapacitors (MSCs) have emerged as promising miniaturized energy-storage devices for self-powered electronics. However, their practical adoption is hindered by insufficient energy density, poor stability, and short lifespan, necessitating solutions for improved practicability. Herein, we report a novel microwire embedded NiSe2/MoSe2 (NMS) heterostructure MSC that addresses these challenges through photoenhanced energy storage. The device showcases a remarkable performance with a volumetric capacitance of ∼1014 F cm–3, an energy density of ∼140 mWh cm–3, and a power density of ∼1.6 W cm–3. Density functional theory calculations reveal 33-fold higher quantum capacitance and 16-fold lower OH ion adsorption energy compared to pristine monometallic counterparts. Notably, the device powers a red light-emitting diode for 3 min after 1 min of charging, supports a healthcare monitoring device for up to 6 h, and retains ∼100% capacitance over 60000 cycles with 95% Columbic efficiency. Overall, this strategy offers a viable pathway to improve the MSC performance for next-generation microelectronics and biomedical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信