挥发诱导的表面活性纳米颗粒的局部形成,用于高效电化学还原纯二氧化碳

IF 26 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ling Fu, Senran Hao, Kuiwu Lin, Beijing Cai, Hailong Liao, Yuan Zhang, Tao Liu, Bin Chen, Heping Xie
{"title":"挥发诱导的表面活性纳米颗粒的局部形成,用于高效电化学还原纯二氧化碳","authors":"Ling Fu, Senran Hao, Kuiwu Lin, Beijing Cai, Hailong Liao, Yuan Zhang, Tao Liu, Bin Chen, Heping Xie","doi":"10.1002/aenm.202502241","DOIUrl":null,"url":null,"abstract":"Efficient CO<jats:sub>2</jats:sub> electroreduction is an enabling technology for zero CO<jats:sub>2</jats:sub> emission in many novel electrochemical fossil fuel utilization technologies, such as direct coal fuel cells. Solid oxide electrolysis cells (SOECs) offer the highest potential for large‐scale CO<jats:sub>2</jats:sub> electroreduction due to the higher current density and energy efficiency compared to low‐temperature CO<jats:sub>2</jats:sub> electrolysis. However, conventional unmodified cathodes suffer from low activity and rapid degradation in pure CO<jats:sub>2</jats:sub> at high temperatures. Here, a material design strategy is demonstrated that enhances perovskite cathode activity and stability by doping Li into PrBaFe<jats:sub>1.6</jats:sub>Ni<jats:sub>0.2</jats:sub>Nb<jats:sub>0.2</jats:sub>O<jats:sub>6‐δ</jats:sub> (Pr<jats:sub>0.9</jats:sub>Ba<jats:sub>0.9</jats:sub>Li<jats:sub>0.2</jats:sub>Fe<jats:sub>1.6</jats:sub>Ni<jats:sub>0.2</jats:sub>Nb<jats:sub>0.2</jats:sub>O<jats:sub>6‐δ</jats:sub>, PBLFNN), inducing the spontaneous formation of surface‐active oxide nanoparticles composed of Fe‐Ni‐O (Ni<jats:sub>x</jats:sub>Fe<jats:sub>1‐x</jats:sub>O) via Li<jats:sub>2</jats:sub>O volatilization during synthesis, without the need for additional modification. The PBLFNN‐SDC cathode achieved a high current density of 1.76 A cm<jats:sup>−2</jats:sup> at 1.5 V and 800 °C in pure CO<jats:sub>2</jats:sub>, a 74.26% improvement over the undoped PBFNN‐SDC cathode. DFT calculations confirmed that Li doping and Ni<jats:sub>x</jats:sub>Fe<jats:sub>1‐x</jats:sub>O exsolution synergistically lower the oxygen vacancy formation energy and promote CO<jats:sub>2</jats:sub> adsorption and activation. This findings introduce a scalable, non‐external modification exsolution strategy for designing high‐performance perovskite‐based cathodes for more efficient and durable CO<jats:sub>2</jats:sub> electroreduction.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"28 1","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Volatilization‐Induced Local Formation of Surface‐Active Nanoparticles for Efficient Electrochemical Reduction of Pure CO2\",\"authors\":\"Ling Fu, Senran Hao, Kuiwu Lin, Beijing Cai, Hailong Liao, Yuan Zhang, Tao Liu, Bin Chen, Heping Xie\",\"doi\":\"10.1002/aenm.202502241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient CO<jats:sub>2</jats:sub> electroreduction is an enabling technology for zero CO<jats:sub>2</jats:sub> emission in many novel electrochemical fossil fuel utilization technologies, such as direct coal fuel cells. Solid oxide electrolysis cells (SOECs) offer the highest potential for large‐scale CO<jats:sub>2</jats:sub> electroreduction due to the higher current density and energy efficiency compared to low‐temperature CO<jats:sub>2</jats:sub> electrolysis. However, conventional unmodified cathodes suffer from low activity and rapid degradation in pure CO<jats:sub>2</jats:sub> at high temperatures. Here, a material design strategy is demonstrated that enhances perovskite cathode activity and stability by doping Li into PrBaFe<jats:sub>1.6</jats:sub>Ni<jats:sub>0.2</jats:sub>Nb<jats:sub>0.2</jats:sub>O<jats:sub>6‐δ</jats:sub> (Pr<jats:sub>0.9</jats:sub>Ba<jats:sub>0.9</jats:sub>Li<jats:sub>0.2</jats:sub>Fe<jats:sub>1.6</jats:sub>Ni<jats:sub>0.2</jats:sub>Nb<jats:sub>0.2</jats:sub>O<jats:sub>6‐δ</jats:sub>, PBLFNN), inducing the spontaneous formation of surface‐active oxide nanoparticles composed of Fe‐Ni‐O (Ni<jats:sub>x</jats:sub>Fe<jats:sub>1‐x</jats:sub>O) via Li<jats:sub>2</jats:sub>O volatilization during synthesis, without the need for additional modification. The PBLFNN‐SDC cathode achieved a high current density of 1.76 A cm<jats:sup>−2</jats:sup> at 1.5 V and 800 °C in pure CO<jats:sub>2</jats:sub>, a 74.26% improvement over the undoped PBFNN‐SDC cathode. DFT calculations confirmed that Li doping and Ni<jats:sub>x</jats:sub>Fe<jats:sub>1‐x</jats:sub>O exsolution synergistically lower the oxygen vacancy formation energy and promote CO<jats:sub>2</jats:sub> adsorption and activation. This findings introduce a scalable, non‐external modification exsolution strategy for designing high‐performance perovskite‐based cathodes for more efficient and durable CO<jats:sub>2</jats:sub> electroreduction.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202502241\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202502241","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高效的CO2电还原是许多新型电化学化石燃料利用技术(如直接煤燃料电池)实现CO2零排放的使能技术。与低温二氧化碳电解相比,固体氧化物电解电池(soec)具有更高的电流密度和能量效率,为大规模二氧化碳电还原提供了最大的潜力。然而,传统的未经修饰的阴极在高温下的纯二氧化碳中存在低活性和快速降解的问题。本文提出了一种材料设计策略,通过将Li掺杂到prbafe1.6 ni0.2 nb0.2 2o6‐δ (pr0.9 ba0.9 li0.2 fe1.6 ni0.2 nb0.2 2o6‐δ, PBLFNN)中,可以提高钙钛矿阴极的活性和稳定性,在合成过程中通过Li2O挥发诱导自发形成由Fe‐Ni‐O (NixFe1‐xO)组成的表面活性氧化物纳米颗粒,而无需额外的修饰。PBLFNN - SDC阴极在1.5 V和800°C的纯CO2中获得了1.76 a cm - 2的高电流密度,比未掺杂的pbnn - SDC阴极提高了74.26%。DFT计算证实,Li掺杂和NixFe1‐xO溶出可协同降低氧空位形成能,促进CO2吸附和活化。这一发现为设计高性能钙钛矿基阴极提供了一种可扩展的、非外部改性的溶出策略,以实现更高效、更持久的二氧化碳电还原。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Volatilization‐Induced Local Formation of Surface‐Active Nanoparticles for Efficient Electrochemical Reduction of Pure CO2
Efficient CO2 electroreduction is an enabling technology for zero CO2 emission in many novel electrochemical fossil fuel utilization technologies, such as direct coal fuel cells. Solid oxide electrolysis cells (SOECs) offer the highest potential for large‐scale CO2 electroreduction due to the higher current density and energy efficiency compared to low‐temperature CO2 electrolysis. However, conventional unmodified cathodes suffer from low activity and rapid degradation in pure CO2 at high temperatures. Here, a material design strategy is demonstrated that enhances perovskite cathode activity and stability by doping Li into PrBaFe1.6Ni0.2Nb0.2O6‐δ (Pr0.9Ba0.9Li0.2Fe1.6Ni0.2Nb0.2O6‐δ, PBLFNN), inducing the spontaneous formation of surface‐active oxide nanoparticles composed of Fe‐Ni‐O (NixFe1‐xO) via Li2O volatilization during synthesis, without the need for additional modification. The PBLFNN‐SDC cathode achieved a high current density of 1.76 A cm−2 at 1.5 V and 800 °C in pure CO2, a 74.26% improvement over the undoped PBFNN‐SDC cathode. DFT calculations confirmed that Li doping and NixFe1‐xO exsolution synergistically lower the oxygen vacancy formation energy and promote CO2 adsorption and activation. This findings introduce a scalable, non‐external modification exsolution strategy for designing high‐performance perovskite‐based cathodes for more efficient and durable CO2 electroreduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信