{"title":"3 - ch5介导的Trim28降解保留小鼠胰岛β细胞功能","authors":"Yangshan Chen, Wei Pang, Guixing Ma, Yongcong Yan, Zhiyu Xiao, Yong Chen, Zhen Ding, Litong Chen, Xiaoting Hou, Huiling Cao","doi":"10.1038/s41467-025-62587-z","DOIUrl":null,"url":null,"abstract":"<p>Insulin deficiency from β-cell dysfunction underpins both type 1 and type 2 diabetes. However, the regulatory pathways underlying β-cell function remain incompletely understood. Here, we identify that March5 and Trim28 as key modulators of β-cell function. March5 is downregulated and Trim28 upregulated in islets from human or mouse with impaired glucose tolerance. Loss of March5 in β-cells impairs insulin production and glucose tolerance, while its overexpression improves both. Mechanistically, March5 inhibits Trim28 by targeting it for ubiquitination, thereby preventing Trim28-mediated Kindlin-2 degradation, which elevates MafA and insulin expression in male mice. Trim28 deletion in β-cells rescues glucose intolerance in March5-deficient male mice, highlighting their joint regulatory pathway. Furthermore, <i>March5</i> and <i>Kindlin-2</i> double haploinsufficiency significantly impair insulin production and glucose tolerance, underscoring their shared pathway. Importantly, islet transplantation with March5-overexpressing or Trim28-deficient β-cells effectively ameliorates glucose intolerance in streptozotocin-induced diabetic male mice. In conclusion, our results suggest that targeting the March5/Trim28/Kindlin-2/MafA pathway may offer a promising therapeutic strategy to restore β-cell function in diabetes.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"26 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"March5-mediated Trim28 degradation preserves islet β-cell function in mice\",\"authors\":\"Yangshan Chen, Wei Pang, Guixing Ma, Yongcong Yan, Zhiyu Xiao, Yong Chen, Zhen Ding, Litong Chen, Xiaoting Hou, Huiling Cao\",\"doi\":\"10.1038/s41467-025-62587-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Insulin deficiency from β-cell dysfunction underpins both type 1 and type 2 diabetes. However, the regulatory pathways underlying β-cell function remain incompletely understood. Here, we identify that March5 and Trim28 as key modulators of β-cell function. March5 is downregulated and Trim28 upregulated in islets from human or mouse with impaired glucose tolerance. Loss of March5 in β-cells impairs insulin production and glucose tolerance, while its overexpression improves both. Mechanistically, March5 inhibits Trim28 by targeting it for ubiquitination, thereby preventing Trim28-mediated Kindlin-2 degradation, which elevates MafA and insulin expression in male mice. Trim28 deletion in β-cells rescues glucose intolerance in March5-deficient male mice, highlighting their joint regulatory pathway. Furthermore, <i>March5</i> and <i>Kindlin-2</i> double haploinsufficiency significantly impair insulin production and glucose tolerance, underscoring their shared pathway. Importantly, islet transplantation with March5-overexpressing or Trim28-deficient β-cells effectively ameliorates glucose intolerance in streptozotocin-induced diabetic male mice. In conclusion, our results suggest that targeting the March5/Trim28/Kindlin-2/MafA pathway may offer a promising therapeutic strategy to restore β-cell function in diabetes.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62587-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62587-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
March5-mediated Trim28 degradation preserves islet β-cell function in mice
Insulin deficiency from β-cell dysfunction underpins both type 1 and type 2 diabetes. However, the regulatory pathways underlying β-cell function remain incompletely understood. Here, we identify that March5 and Trim28 as key modulators of β-cell function. March5 is downregulated and Trim28 upregulated in islets from human or mouse with impaired glucose tolerance. Loss of March5 in β-cells impairs insulin production and glucose tolerance, while its overexpression improves both. Mechanistically, March5 inhibits Trim28 by targeting it for ubiquitination, thereby preventing Trim28-mediated Kindlin-2 degradation, which elevates MafA and insulin expression in male mice. Trim28 deletion in β-cells rescues glucose intolerance in March5-deficient male mice, highlighting their joint regulatory pathway. Furthermore, March5 and Kindlin-2 double haploinsufficiency significantly impair insulin production and glucose tolerance, underscoring their shared pathway. Importantly, islet transplantation with March5-overexpressing or Trim28-deficient β-cells effectively ameliorates glucose intolerance in streptozotocin-induced diabetic male mice. In conclusion, our results suggest that targeting the March5/Trim28/Kindlin-2/MafA pathway may offer a promising therapeutic strategy to restore β-cell function in diabetes.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.