Chen Fan, John Cowgill, Rebecca J. Howard, Erik Lindahl
{"title":"与拮抗剂和激动剂药物相关的ρ1 GABAA受体的低温电镜结构","authors":"Chen Fan, John Cowgill, Rebecca J. Howard, Erik Lindahl","doi":"10.1038/s41467-025-61932-6","DOIUrl":null,"url":null,"abstract":"<p>The family of ρ-type GABA<sub>A</sub> receptors includes potential therapeutic targets in several neurological conditions, and features distinctive pharmacology compared to other subtypes. Here we report four cryo-EM structures with previously unresolved ligands, electrophysiology recordings, and molecular dynamics simulations to characterize binding and conformational impact of the drugs THIP (a non-opioid analgesic), CGP36742 (a phosphinic acid) and GABOB (an anticonvulsant) on a human ρ1 GABA<sub>A</sub> receptor. A distinctive binding pose of THIP in ρ1 versus α4β3δ GABA<sub>A</sub> receptors offers a rationale for its inverse effects on these subtypes. CGP36742 binding is similar to the canonical ρ-type inhibitor TPMPA, supporting a shared mechanism of action among phosphinic acids. Binding of GABOB is similar to GABA, but produces a mixture of partially-locked and desensitized states, likely underlying weaker agonist activity. Together, these results elucidate interactions of a ρ-type GABA<sub>A</sub> receptor with therapeutic drugs, offering mechanistic insights and a basis for further pharmaceutical development.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"728 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryo-EM structures of ρ1 GABAA receptors with antagonist and agonist drugs\",\"authors\":\"Chen Fan, John Cowgill, Rebecca J. Howard, Erik Lindahl\",\"doi\":\"10.1038/s41467-025-61932-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The family of ρ-type GABA<sub>A</sub> receptors includes potential therapeutic targets in several neurological conditions, and features distinctive pharmacology compared to other subtypes. Here we report four cryo-EM structures with previously unresolved ligands, electrophysiology recordings, and molecular dynamics simulations to characterize binding and conformational impact of the drugs THIP (a non-opioid analgesic), CGP36742 (a phosphinic acid) and GABOB (an anticonvulsant) on a human ρ1 GABA<sub>A</sub> receptor. A distinctive binding pose of THIP in ρ1 versus α4β3δ GABA<sub>A</sub> receptors offers a rationale for its inverse effects on these subtypes. CGP36742 binding is similar to the canonical ρ-type inhibitor TPMPA, supporting a shared mechanism of action among phosphinic acids. Binding of GABOB is similar to GABA, but produces a mixture of partially-locked and desensitized states, likely underlying weaker agonist activity. Together, these results elucidate interactions of a ρ-type GABA<sub>A</sub> receptor with therapeutic drugs, offering mechanistic insights and a basis for further pharmaceutical development.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"728 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61932-6\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61932-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Cryo-EM structures of ρ1 GABAA receptors with antagonist and agonist drugs
The family of ρ-type GABAA receptors includes potential therapeutic targets in several neurological conditions, and features distinctive pharmacology compared to other subtypes. Here we report four cryo-EM structures with previously unresolved ligands, electrophysiology recordings, and molecular dynamics simulations to characterize binding and conformational impact of the drugs THIP (a non-opioid analgesic), CGP36742 (a phosphinic acid) and GABOB (an anticonvulsant) on a human ρ1 GABAA receptor. A distinctive binding pose of THIP in ρ1 versus α4β3δ GABAA receptors offers a rationale for its inverse effects on these subtypes. CGP36742 binding is similar to the canonical ρ-type inhibitor TPMPA, supporting a shared mechanism of action among phosphinic acids. Binding of GABOB is similar to GABA, but produces a mixture of partially-locked and desensitized states, likely underlying weaker agonist activity. Together, these results elucidate interactions of a ρ-type GABAA receptor with therapeutic drugs, offering mechanistic insights and a basis for further pharmaceutical development.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.