事件触发的人机共享转向在线学习控制策略,以适应驾驶员行为的不确定性。

IF 6.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Wanqing Shi , Hongyan Guo , Jun Liu , Qingyu Meng , Xu Zhao , Dongpu Cao , Hong Chen
{"title":"事件触发的人机共享转向在线学习控制策略,以适应驾驶员行为的不确定性。","authors":"Wanqing Shi ,&nbsp;Hongyan Guo ,&nbsp;Jun Liu ,&nbsp;Qingyu Meng ,&nbsp;Xu Zhao ,&nbsp;Dongpu Cao ,&nbsp;Hong Chen","doi":"10.1016/j.isatra.2025.07.033","DOIUrl":null,"url":null,"abstract":"<div><div>To address the stochasticity and uncertainty in driver behavior, an event-triggered shared control strategy is proposed, enabling real-time adaptation while ensuring system stability. The vehicle control system is modeled as a nonlinear time-varying (NTV) system, incorporating human-machine interaction, driver behavior, variable speeds, and uncertain tire dynamics. Sparse Gaussian process regression (GPR) is employed for online system identification, eliminating the need for an exact system model. An adaptive feedback linearization (AFL) controller is designed, with asymptotic stability proven using a common Lyapunov function (CLF). The event-triggered mechanism updates the model and controller only when GPR uncertainty exceeds an adaptive threshold. Simulations and driver-in-the-loop experiments assess the proposed algorithm, demonstrating its robustness and adaptability to different driver behaviors, while reducing communication overhead and ensuring precise steering control.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"166 ","pages":"Pages 229-240"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-triggered human-machine shared steering online learning control strategy to accommodate driver behavioral uncertainty\",\"authors\":\"Wanqing Shi ,&nbsp;Hongyan Guo ,&nbsp;Jun Liu ,&nbsp;Qingyu Meng ,&nbsp;Xu Zhao ,&nbsp;Dongpu Cao ,&nbsp;Hong Chen\",\"doi\":\"10.1016/j.isatra.2025.07.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To address the stochasticity and uncertainty in driver behavior, an event-triggered shared control strategy is proposed, enabling real-time adaptation while ensuring system stability. The vehicle control system is modeled as a nonlinear time-varying (NTV) system, incorporating human-machine interaction, driver behavior, variable speeds, and uncertain tire dynamics. Sparse Gaussian process regression (GPR) is employed for online system identification, eliminating the need for an exact system model. An adaptive feedback linearization (AFL) controller is designed, with asymptotic stability proven using a common Lyapunov function (CLF). The event-triggered mechanism updates the model and controller only when GPR uncertainty exceeds an adaptive threshold. Simulations and driver-in-the-loop experiments assess the proposed algorithm, demonstrating its robustness and adaptability to different driver behaviors, while reducing communication overhead and ensuring precise steering control.</div></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"166 \",\"pages\":\"Pages 229-240\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057825003829\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057825003829","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

针对驾驶员行为的随机性和不确定性,提出了一种事件触发共享控制策略,在保证系统稳定性的同时实现实时自适应。车辆控制系统被建模为一个非线性时变(NTV)系统,包括人机交互、驾驶员行为、变速和不确定的轮胎动力学。稀疏高斯过程回归(GPR)用于在线系统辨识,消除了对精确系统模型的需要。设计了一种自适应反馈线性化(AFL)控制器,并利用公共Lyapunov函数(CLF)证明了该控制器的渐近稳定性。事件触发机制仅在探地雷达不确定性超过自适应阈值时更新模型和控制器。仿真和驾驶员在环实验验证了该算法的鲁棒性和对不同驾驶员行为的适应性,同时减少了通信开销并确保了精确的转向控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event-triggered human-machine shared steering online learning control strategy to accommodate driver behavioral uncertainty
To address the stochasticity and uncertainty in driver behavior, an event-triggered shared control strategy is proposed, enabling real-time adaptation while ensuring system stability. The vehicle control system is modeled as a nonlinear time-varying (NTV) system, incorporating human-machine interaction, driver behavior, variable speeds, and uncertain tire dynamics. Sparse Gaussian process regression (GPR) is employed for online system identification, eliminating the need for an exact system model. An adaptive feedback linearization (AFL) controller is designed, with asymptotic stability proven using a common Lyapunov function (CLF). The event-triggered mechanism updates the model and controller only when GPR uncertainty exceeds an adaptive threshold. Simulations and driver-in-the-loop experiments assess the proposed algorithm, demonstrating its robustness and adaptability to different driver behaviors, while reducing communication overhead and ensuring precise steering control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISA transactions
ISA transactions 工程技术-工程:综合
CiteScore
11.70
自引率
12.30%
发文量
824
审稿时长
4.4 months
期刊介绍: ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信