肌肉萎缩的细胞生物力学:从复杂的机制到治疗前沿。

IF 4.3
Annals of medicine Pub Date : 2025-12-01 Epub Date: 2025-08-01 DOI:10.1080/07853890.2025.2540598
Yilin Wang, Jingyuan Meng, Jiechao Zhang, Lichao Tian, Wenrui Wei, Xiaoye Tang, Qian Zhang, Daofang Ding, Xuepeng Wang, Zicheng Guo, Yong He
{"title":"肌肉萎缩的细胞生物力学:从复杂的机制到治疗前沿。","authors":"Yilin Wang, Jingyuan Meng, Jiechao Zhang, Lichao Tian, Wenrui Wei, Xiaoye Tang, Qian Zhang, Daofang Ding, Xuepeng Wang, Zicheng Guo, Yong He","doi":"10.1080/07853890.2025.2540598","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Muscle atrophy-the decline of skeletal muscle volume and function-is pervasive in chronic disease, aging, and inactivity. As the primary driver of human mobility and metabolic health, skeletal muscle loss diminishes quality of life and increases healthcare burden. Atrophy impairs recovery and prognosis by reducing metabolic capacity, accelerating systemic protein catabolism, and compromising the biomechanical support necessary for movement and respiration. Although core molecular pathways and cellular changes are well characterized, the role of mechanical cues in modulating these mechanisms remains underexplored.</p><p><strong>Main findings: </strong>Our review reveals five convergent atrophy drivers-mechanical unloading, ECM alterations, mitochondrial dysfunction/oxidative stress, inflammation, and endocrine imbalance-that converge on inhibited mTORC1 signaling, activated FoxO/UPS/autophagy, and impaired satellite-cell function. Quantitative data show that axial stretch preserves PI3K/Akt/mTOR activity, with phosphorylated Akt levels increasing by two- to three-fold and fiber cross-sectional area expanding by 10%-20%; low-intensity compression activates AMPK and autophagy, with AMPK phosphorylation rising by 1.5-fold without triggering excessive protein breakdown; and shear stress enhances VEGF and Nrf2-mediated angiogenesis and antioxidant defenses, doubling VEGF expression and reducing ROS levels by 25% to mitigate neurogenic atrophy. Moreover, stem-cell myogenic differentiation is optimized on 3D biomimetic substrates with stiffness from 11 to 17 kPa under physiological loading, and advances in biomaterials and tissue engineering enable more accurate muscle-tissue models.</p><p><strong>Future directions: </strong>Translating these biomechanical insights into tailored clinical interventions-combining stretch, compression, and shear modalities with biomaterials, stem-cell technologies, and personalized exercise programs- holds promise for preventing and reversing muscle atrophy across diverse patient populations.</p>","PeriodicalId":93874,"journal":{"name":"Annals of medicine","volume":"57 1","pages":"2540598"},"PeriodicalIF":4.3000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320261/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cell biomechanics on muscle atrophy: from intricate mechanisms to therapeutic frontiers.\",\"authors\":\"Yilin Wang, Jingyuan Meng, Jiechao Zhang, Lichao Tian, Wenrui Wei, Xiaoye Tang, Qian Zhang, Daofang Ding, Xuepeng Wang, Zicheng Guo, Yong He\",\"doi\":\"10.1080/07853890.2025.2540598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Muscle atrophy-the decline of skeletal muscle volume and function-is pervasive in chronic disease, aging, and inactivity. As the primary driver of human mobility and metabolic health, skeletal muscle loss diminishes quality of life and increases healthcare burden. Atrophy impairs recovery and prognosis by reducing metabolic capacity, accelerating systemic protein catabolism, and compromising the biomechanical support necessary for movement and respiration. Although core molecular pathways and cellular changes are well characterized, the role of mechanical cues in modulating these mechanisms remains underexplored.</p><p><strong>Main findings: </strong>Our review reveals five convergent atrophy drivers-mechanical unloading, ECM alterations, mitochondrial dysfunction/oxidative stress, inflammation, and endocrine imbalance-that converge on inhibited mTORC1 signaling, activated FoxO/UPS/autophagy, and impaired satellite-cell function. Quantitative data show that axial stretch preserves PI3K/Akt/mTOR activity, with phosphorylated Akt levels increasing by two- to three-fold and fiber cross-sectional area expanding by 10%-20%; low-intensity compression activates AMPK and autophagy, with AMPK phosphorylation rising by 1.5-fold without triggering excessive protein breakdown; and shear stress enhances VEGF and Nrf2-mediated angiogenesis and antioxidant defenses, doubling VEGF expression and reducing ROS levels by 25% to mitigate neurogenic atrophy. Moreover, stem-cell myogenic differentiation is optimized on 3D biomimetic substrates with stiffness from 11 to 17 kPa under physiological loading, and advances in biomaterials and tissue engineering enable more accurate muscle-tissue models.</p><p><strong>Future directions: </strong>Translating these biomechanical insights into tailored clinical interventions-combining stretch, compression, and shear modalities with biomaterials, stem-cell technologies, and personalized exercise programs- holds promise for preventing and reversing muscle atrophy across diverse patient populations.</p>\",\"PeriodicalId\":93874,\"journal\":{\"name\":\"Annals of medicine\",\"volume\":\"57 1\",\"pages\":\"2540598\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320261/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07853890.2025.2540598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07853890.2025.2540598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:肌肉萎缩——骨骼肌体积和功能的下降——在慢性疾病、衰老和不运动中普遍存在。作为人类活动能力和代谢健康的主要驱动因素,骨骼肌损失降低了生活质量并增加了医疗负担。萎缩通过降低代谢能力,加速全身蛋白质分解代谢,损害运动和呼吸所必需的生物力学支持,从而损害恢复和预后。尽管核心分子途径和细胞变化已经被很好地表征,但机械线索在调节这些机制中的作用仍未得到充分探讨。主要发现:我们的综述揭示了五种趋同的萎缩驱动因素——机械卸载、ECM改变、线粒体功能障碍/氧化应激、炎症和内分泌失衡——它们聚集在mTORC1信号抑制、FoxO/UPS/自噬激活和卫星细胞功能受损上。定量数据显示,轴向拉伸可保持PI3K/Akt/mTOR活性,磷酸化Akt水平增加2 - 3倍,纤维横截面积增加10%-20%;低强度压缩激活AMPK和自噬,AMPK磷酸化升高1.5倍而不触发过多的蛋白质分解;剪切应力增强VEGF和nrf2介导的血管生成和抗氧化防御,使VEGF表达增加一倍,使ROS水平降低25%,以减轻神经源性萎缩。此外,干细胞成肌分化在生理负荷下的3D仿生基质上进行了优化,其刚度从11到17 kPa不等,生物材料和组织工程的进步使肌肉组织模型更加精确。未来方向:将这些生物力学见解转化为量身定制的临床干预-将拉伸,压缩和剪切模式与生物材料,干细胞技术和个性化锻炼计划相结合- 有望预防和逆转不同患者群体的肌肉萎缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cell biomechanics on muscle atrophy: from intricate mechanisms to therapeutic frontiers.

Cell biomechanics on muscle atrophy: from intricate mechanisms to therapeutic frontiers.

Cell biomechanics on muscle atrophy: from intricate mechanisms to therapeutic frontiers.

Cell biomechanics on muscle atrophy: from intricate mechanisms to therapeutic frontiers.

Background: Muscle atrophy-the decline of skeletal muscle volume and function-is pervasive in chronic disease, aging, and inactivity. As the primary driver of human mobility and metabolic health, skeletal muscle loss diminishes quality of life and increases healthcare burden. Atrophy impairs recovery and prognosis by reducing metabolic capacity, accelerating systemic protein catabolism, and compromising the biomechanical support necessary for movement and respiration. Although core molecular pathways and cellular changes are well characterized, the role of mechanical cues in modulating these mechanisms remains underexplored.

Main findings: Our review reveals five convergent atrophy drivers-mechanical unloading, ECM alterations, mitochondrial dysfunction/oxidative stress, inflammation, and endocrine imbalance-that converge on inhibited mTORC1 signaling, activated FoxO/UPS/autophagy, and impaired satellite-cell function. Quantitative data show that axial stretch preserves PI3K/Akt/mTOR activity, with phosphorylated Akt levels increasing by two- to three-fold and fiber cross-sectional area expanding by 10%-20%; low-intensity compression activates AMPK and autophagy, with AMPK phosphorylation rising by 1.5-fold without triggering excessive protein breakdown; and shear stress enhances VEGF and Nrf2-mediated angiogenesis and antioxidant defenses, doubling VEGF expression and reducing ROS levels by 25% to mitigate neurogenic atrophy. Moreover, stem-cell myogenic differentiation is optimized on 3D biomimetic substrates with stiffness from 11 to 17 kPa under physiological loading, and advances in biomaterials and tissue engineering enable more accurate muscle-tissue models.

Future directions: Translating these biomechanical insights into tailored clinical interventions-combining stretch, compression, and shear modalities with biomaterials, stem-cell technologies, and personalized exercise programs- holds promise for preventing and reversing muscle atrophy across diverse patient populations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信