人口药代动力学建模自动化的机器学习方法。

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Sam Richardson, Itziar Irurzun Arana, Andrzej Nowojewski, Diansong Zhou, Jacob Leander, Weifeng Tang, Richard Dearden, Megan Gibbs
{"title":"人口药代动力学建模自动化的机器学习方法。","authors":"Sam Richardson, Itziar Irurzun Arana, Andrzej Nowojewski, Diansong Zhou, Jacob Leander, Weifeng Tang, Richard Dearden, Megan Gibbs","doi":"10.1038/s43856-025-01054-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Population pharmacokinetic (PopPK) models are crucial for understanding drug behaviour across populations, yet traditional development is often labour-intensive and slow. This study demonstrates an automated, out-of-the-box approach for popPK model development, leveraging optimisation algorithms implemented using pyDarwin to efficiently handle a diverse range of extravascular drugs.</p><p><strong>Methods: </strong>We proposed a generic model search space for drugs with extravascular administration and developed a penalty function to discourage over-parameterisation whilst ensuring plausible parameter values. Optimisation within the model search space was conducted using pyDarwin, employing Bayesian optimisation with a random forest surrogate combined with exhaustive local search. This approach was evaluated on one synthetic and four clinical datasets, with results compared to manually developed models.</p><p><strong>Results: </strong>Here we show that the automated approach reliably identifies model structures comparable to manually developed expert models in less than 48 h on average (40-CPU, 40 GB environment) while evaluating fewer than 2.6% of the models in the search space. Ablation experiments demonstrate the importance of our penalty function in selecting plausible models, and the benefit of global search algorithms in avoiding local minima.</p><p><strong>Conclusions: </strong>These results demonstrate that a single penalty function and model space can be used within the pyDarwin framework to automatically identify model structures for a diverse range of drugs. By reducing the configuration required at search setup, this approach simplifies the process, potentially making the technology more accessible to users. Adoption of automatic model search can accelerate popPK analysis, improve model quality, increase reproducibility, and reduce manual effort for modellers.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"327"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314194/pdf/","citationCount":"0","resultStr":"{\"title\":\"A machine learning approach to population pharmacokinetic modelling automation.\",\"authors\":\"Sam Richardson, Itziar Irurzun Arana, Andrzej Nowojewski, Diansong Zhou, Jacob Leander, Weifeng Tang, Richard Dearden, Megan Gibbs\",\"doi\":\"10.1038/s43856-025-01054-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Population pharmacokinetic (PopPK) models are crucial for understanding drug behaviour across populations, yet traditional development is often labour-intensive and slow. This study demonstrates an automated, out-of-the-box approach for popPK model development, leveraging optimisation algorithms implemented using pyDarwin to efficiently handle a diverse range of extravascular drugs.</p><p><strong>Methods: </strong>We proposed a generic model search space for drugs with extravascular administration and developed a penalty function to discourage over-parameterisation whilst ensuring plausible parameter values. Optimisation within the model search space was conducted using pyDarwin, employing Bayesian optimisation with a random forest surrogate combined with exhaustive local search. This approach was evaluated on one synthetic and four clinical datasets, with results compared to manually developed models.</p><p><strong>Results: </strong>Here we show that the automated approach reliably identifies model structures comparable to manually developed expert models in less than 48 h on average (40-CPU, 40 GB environment) while evaluating fewer than 2.6% of the models in the search space. Ablation experiments demonstrate the importance of our penalty function in selecting plausible models, and the benefit of global search algorithms in avoiding local minima.</p><p><strong>Conclusions: </strong>These results demonstrate that a single penalty function and model space can be used within the pyDarwin framework to automatically identify model structures for a diverse range of drugs. By reducing the configuration required at search setup, this approach simplifies the process, potentially making the technology more accessible to users. Adoption of automatic model search can accelerate popPK analysis, improve model quality, increase reproducibility, and reduce manual effort for modellers.</p>\",\"PeriodicalId\":72646,\"journal\":{\"name\":\"Communications medicine\",\"volume\":\"5 1\",\"pages\":\"327\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314194/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43856-025-01054-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-01054-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:群体药代动力学(PopPK)模型对于理解人群间的药物行为至关重要,然而传统的开发往往是劳动密集型的,而且速度缓慢。本研究展示了一种自动化的、开箱即用的popPK模型开发方法,利用pyDarwin实现的优化算法有效地处理各种血管外药物。方法:我们提出了一个用于血管外给药的通用模型搜索空间,并开发了一个惩罚函数来阻止过度参数化,同时确保合理的参数值。模型搜索空间内的优化使用pyDarwin进行,采用贝叶斯优化与随机森林代理结合穷举局部搜索。该方法在一个合成数据集和四个临床数据集上进行了评估,并将结果与人工开发的模型进行了比较。结果:在这里,我们表明,自动化方法在平均不到48小时(40- cpu, 40 GB环境)内可靠地识别出与手动开发的专家模型相当的模型结构,而在搜索空间中评估不到2.6%的模型。消融实验证明了惩罚函数在选择合理模型中的重要性,以及全局搜索算法在避免局部最小值方面的优势。结论:这些结果表明,在pyDarwin框架中,可以使用单个惩罚函数和模型空间来自动识别各种药物的模型结构。通过减少搜索设置所需的配置,这种方法简化了过程,可能使用户更容易使用该技术。采用自动模型搜索可以加速popk分析,提高模型质量,增加再现性,并减少建模人员的手工工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A machine learning approach to population pharmacokinetic modelling automation.

Background: Population pharmacokinetic (PopPK) models are crucial for understanding drug behaviour across populations, yet traditional development is often labour-intensive and slow. This study demonstrates an automated, out-of-the-box approach for popPK model development, leveraging optimisation algorithms implemented using pyDarwin to efficiently handle a diverse range of extravascular drugs.

Methods: We proposed a generic model search space for drugs with extravascular administration and developed a penalty function to discourage over-parameterisation whilst ensuring plausible parameter values. Optimisation within the model search space was conducted using pyDarwin, employing Bayesian optimisation with a random forest surrogate combined with exhaustive local search. This approach was evaluated on one synthetic and four clinical datasets, with results compared to manually developed models.

Results: Here we show that the automated approach reliably identifies model structures comparable to manually developed expert models in less than 48 h on average (40-CPU, 40 GB environment) while evaluating fewer than 2.6% of the models in the search space. Ablation experiments demonstrate the importance of our penalty function in selecting plausible models, and the benefit of global search algorithms in avoiding local minima.

Conclusions: These results demonstrate that a single penalty function and model space can be used within the pyDarwin framework to automatically identify model structures for a diverse range of drugs. By reducing the configuration required at search setup, this approach simplifies the process, potentially making the technology more accessible to users. Adoption of automatic model search can accelerate popPK analysis, improve model quality, increase reproducibility, and reduce manual effort for modellers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信