评估人工智能和在线心理治疗倡议,以改善门诊精神病学环境的获取和效率:评估基于人工智能的在线心理治疗倡议,以改善门诊精神病学环境的获取和效率。

IF 3.8 3区 医学 Q2 PSYCHIATRY
Callum Stephenson, Jazmin Eadie, Christina Holmes, Kimia Asadpour, Gilmar Gutierrez, Anchan Kumar, Jasleen Jagayat, Charmy Patel, Saad Sajid, Oleksandr Knyahnytskyi, Megan Yang, Taras Reshetukha, Christina Moi, Tricia Barrett, Amirhossein Shirazi, Vedat Verter, Claudio N Soares, Mohsen Omrani, Nazanin Alavi
{"title":"评估人工智能和在线心理治疗倡议,以改善门诊精神病学环境的获取和效率:评估基于人工智能的在线心理治疗倡议,以改善门诊精神病学环境的获取和效率。","authors":"Callum Stephenson, Jazmin Eadie, Christina Holmes, Kimia Asadpour, Gilmar Gutierrez, Anchan Kumar, Jasleen Jagayat, Charmy Patel, Saad Sajid, Oleksandr Knyahnytskyi, Megan Yang, Taras Reshetukha, Christina Moi, Tricia Barrett, Amirhossein Shirazi, Vedat Verter, Claudio N Soares, Mohsen Omrani, Nazanin Alavi","doi":"10.1177/07067437251355641","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to implement an artificial intelligence-assisted psychiatric triage program, assessing its impact on efficiency and resource optimization.</p><p><strong>Methods: </strong>This project recruited patients on the waitlist for psychiatric evaluation at an outpatient hospital. Participants (<i>n</i> = 101) completed a digital triage module that used natural language processing and machine learning to recommend a care intensity level and a disorder-specific digital psychotherapy program. A psychiatrist also assessed the same information, and the decisions for care intensity and psychotherapy programs were compared with the artificial intelligence recommendations.</p><p><strong>Results: </strong>The overall wait time to receive care decreased by 71.43% due to this initiative. Additionally, participants received psychological care within three weeks after completing the triage module. In 71.29% of the cases, the artificial intelligence-assisted triage program and the psychiatrist suggested the same treatment intensity and psychotherapy program. Additionally, 63.29% of participants allocated to lower-intensity treatment plans by the AI-assisted triage program did not require psychiatric consultation later.</p><p><strong>Conclusions: </strong>Using artificial intelligence to expedite psychiatric triaging is a promising solution to address long wait times for mental health care. With future accuracy refinements, this could be a valuable tool to implement in hospital settings to assist care teams and improve mental health care. This could result in increased care capacity and improved workflow and decision-making.</p>","PeriodicalId":55283,"journal":{"name":"Canadian Journal of Psychiatry-Revue Canadienne De Psychiatrie","volume":" ","pages":"7067437251355641"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316677/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of an Artificial Intelligence and Online Psychotherapy Initiative to Improve Access and Efficiency in an Ambulatory Psychiatric Setting: Évaluation d'une initiative de psychothérapie en ligne basée sur l'intelligence artificielle visant à améliorer l'accès et l'efficacité en milieu psychiatrique ambulatoire.\",\"authors\":\"Callum Stephenson, Jazmin Eadie, Christina Holmes, Kimia Asadpour, Gilmar Gutierrez, Anchan Kumar, Jasleen Jagayat, Charmy Patel, Saad Sajid, Oleksandr Knyahnytskyi, Megan Yang, Taras Reshetukha, Christina Moi, Tricia Barrett, Amirhossein Shirazi, Vedat Verter, Claudio N Soares, Mohsen Omrani, Nazanin Alavi\",\"doi\":\"10.1177/07067437251355641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study aimed to implement an artificial intelligence-assisted psychiatric triage program, assessing its impact on efficiency and resource optimization.</p><p><strong>Methods: </strong>This project recruited patients on the waitlist for psychiatric evaluation at an outpatient hospital. Participants (<i>n</i> = 101) completed a digital triage module that used natural language processing and machine learning to recommend a care intensity level and a disorder-specific digital psychotherapy program. A psychiatrist also assessed the same information, and the decisions for care intensity and psychotherapy programs were compared with the artificial intelligence recommendations.</p><p><strong>Results: </strong>The overall wait time to receive care decreased by 71.43% due to this initiative. Additionally, participants received psychological care within three weeks after completing the triage module. In 71.29% of the cases, the artificial intelligence-assisted triage program and the psychiatrist suggested the same treatment intensity and psychotherapy program. Additionally, 63.29% of participants allocated to lower-intensity treatment plans by the AI-assisted triage program did not require psychiatric consultation later.</p><p><strong>Conclusions: </strong>Using artificial intelligence to expedite psychiatric triaging is a promising solution to address long wait times for mental health care. With future accuracy refinements, this could be a valuable tool to implement in hospital settings to assist care teams and improve mental health care. This could result in increased care capacity and improved workflow and decision-making.</p>\",\"PeriodicalId\":55283,\"journal\":{\"name\":\"Canadian Journal of Psychiatry-Revue Canadienne De Psychiatrie\",\"volume\":\" \",\"pages\":\"7067437251355641\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316677/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Psychiatry-Revue Canadienne De Psychiatrie\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/07067437251355641\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Psychiatry-Revue Canadienne De Psychiatrie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/07067437251355641","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在实施人工智能辅助精神科分诊程序,评估其对效率和资源优化的影响。方法本项目招募在门诊医院等待精神病评估的患者。参与者(n = 101)完成了一个数字分类模块,该模块使用自然语言处理和机器学习来推荐护理强度水平和特定疾病的数字心理治疗计划。一位精神科医生也评估了同样的信息,并将护理强度和心理治疗方案的决定与人工智能的建议进行了比较。结果实施该措施后,患者整体就诊等待时间减少71.43%。此外,参与者在完成分诊模块后的三周内接受了心理护理。在71.29%的病例中,人工智能辅助分诊程序与精神科医生建议的治疗强度和心理治疗方案相同。此外,通过人工智能辅助分诊计划分配到低强度治疗计划的63.29%的参与者后来不需要精神病学咨询。结论利用人工智能加快精神病学分诊是解决精神卫生保健等待时间过长的一个有希望的解决方案。随着未来准确性的提高,这可能是一个有价值的工具,可以在医院环境中实施,以帮助护理团队和改善精神卫生保健。这可以提高护理能力,改善工作流程和决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of an Artificial Intelligence and Online Psychotherapy Initiative to Improve Access and Efficiency in an Ambulatory Psychiatric Setting: Évaluation d'une initiative de psychothérapie en ligne basée sur l'intelligence artificielle visant à améliorer l'accès et l'efficacité en milieu psychiatrique ambulatoire.

Objectives: This study aimed to implement an artificial intelligence-assisted psychiatric triage program, assessing its impact on efficiency and resource optimization.

Methods: This project recruited patients on the waitlist for psychiatric evaluation at an outpatient hospital. Participants (n = 101) completed a digital triage module that used natural language processing and machine learning to recommend a care intensity level and a disorder-specific digital psychotherapy program. A psychiatrist also assessed the same information, and the decisions for care intensity and psychotherapy programs were compared with the artificial intelligence recommendations.

Results: The overall wait time to receive care decreased by 71.43% due to this initiative. Additionally, participants received psychological care within three weeks after completing the triage module. In 71.29% of the cases, the artificial intelligence-assisted triage program and the psychiatrist suggested the same treatment intensity and psychotherapy program. Additionally, 63.29% of participants allocated to lower-intensity treatment plans by the AI-assisted triage program did not require psychiatric consultation later.

Conclusions: Using artificial intelligence to expedite psychiatric triaging is a promising solution to address long wait times for mental health care. With future accuracy refinements, this could be a valuable tool to implement in hospital settings to assist care teams and improve mental health care. This could result in increased care capacity and improved workflow and decision-making.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
2.50%
发文量
69
审稿时长
6-12 weeks
期刊介绍: Established in 1956, The Canadian Journal of Psychiatry (The CJP) has been keeping psychiatrists up-to-date on the latest research for nearly 60 years. The CJP provides a forum for psychiatry and mental health professionals to share their findings with researchers and clinicians. The CJP includes peer-reviewed scientific articles analyzing ongoing developments in Canadian and international psychiatry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信