Lang Bai, Yiyang Jia, Zihan Wang, Zeen Wang, Yunlong Jia, Yuewei Zhang and Shoujun Zhu*,
{"title":"高效NIR-II成像引导光动力治疗中花青素染料白蛋白包封。","authors":"Lang Bai, Yiyang Jia, Zihan Wang, Zeen Wang, Yunlong Jia, Yuewei Zhang and Shoujun Zhu*, ","doi":"10.1021/cbmi.5c00005","DOIUrl":null,"url":null,"abstract":"<p >Albumin encapsulation is a powerful strategy for drug delivery, yet its potential has not been fully explored for photodynamic therapy (PDT) agents. Cl-containing near-infrared (NIR) cyanine dyes are intrinsically PDT agents and tend to covalently bind with albumin; however, their PDT efficiency in tumors is largely compromised due to limited accumulation of the complex (size less than 10 nm) to the tumor site. To maximize their PDT effect while retaining sufficient NIR brightness for imaging-guided PDT, we developed a DTT-promoted encapsulation strategy to enhance singlet oxygen release for Cl-containing dyes. By disrupting disulfide bonds in albumin, the protein shell is loosened, increasing size while maintaining singlet oxygen release, partial brightness, and photostability. In vivo experiments reveal the rapid tumor accumulation of IR-6B3@DTT-HSA, enabling flexible treatment timing. This strategy enhances targeted delivery and PDT efficacy, paving the way for broader applications in cancer therapy.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 7","pages":"424–432"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12308594/pdf/","citationCount":"0","resultStr":"{\"title\":\"Albumin Encapsulation of Cyanine Dye for High-Performance NIR-II Imaging-Guided Photodynamic Therapy\",\"authors\":\"Lang Bai, Yiyang Jia, Zihan Wang, Zeen Wang, Yunlong Jia, Yuewei Zhang and Shoujun Zhu*, \",\"doi\":\"10.1021/cbmi.5c00005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Albumin encapsulation is a powerful strategy for drug delivery, yet its potential has not been fully explored for photodynamic therapy (PDT) agents. Cl-containing near-infrared (NIR) cyanine dyes are intrinsically PDT agents and tend to covalently bind with albumin; however, their PDT efficiency in tumors is largely compromised due to limited accumulation of the complex (size less than 10 nm) to the tumor site. To maximize their PDT effect while retaining sufficient NIR brightness for imaging-guided PDT, we developed a DTT-promoted encapsulation strategy to enhance singlet oxygen release for Cl-containing dyes. By disrupting disulfide bonds in albumin, the protein shell is loosened, increasing size while maintaining singlet oxygen release, partial brightness, and photostability. In vivo experiments reveal the rapid tumor accumulation of IR-6B3@DTT-HSA, enabling flexible treatment timing. This strategy enhances targeted delivery and PDT efficacy, paving the way for broader applications in cancer therapy.</p>\",\"PeriodicalId\":53181,\"journal\":{\"name\":\"Chemical & Biomedical Imaging\",\"volume\":\"3 7\",\"pages\":\"424–432\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12308594/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical & Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/cbmi.5c00005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.5c00005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Albumin Encapsulation of Cyanine Dye for High-Performance NIR-II Imaging-Guided Photodynamic Therapy
Albumin encapsulation is a powerful strategy for drug delivery, yet its potential has not been fully explored for photodynamic therapy (PDT) agents. Cl-containing near-infrared (NIR) cyanine dyes are intrinsically PDT agents and tend to covalently bind with albumin; however, their PDT efficiency in tumors is largely compromised due to limited accumulation of the complex (size less than 10 nm) to the tumor site. To maximize their PDT effect while retaining sufficient NIR brightness for imaging-guided PDT, we developed a DTT-promoted encapsulation strategy to enhance singlet oxygen release for Cl-containing dyes. By disrupting disulfide bonds in albumin, the protein shell is loosened, increasing size while maintaining singlet oxygen release, partial brightness, and photostability. In vivo experiments reveal the rapid tumor accumulation of IR-6B3@DTT-HSA, enabling flexible treatment timing. This strategy enhances targeted delivery and PDT efficacy, paving the way for broader applications in cancer therapy.
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging