{"title":"Foxg1和视黄酸信号调节发育中的嗅上皮的区向模式。","authors":"Anzu Kuriyama, Carina Hanashima","doi":"10.1111/dgd.70020","DOIUrl":null,"url":null,"abstract":"<p>Odor information processing begins in the olfactory epithelium (OE), which in mice is spatially divided into two zones: the dorsomedial zone (D-zone), responsible for innate aversive behaviors, and the ventrolateral zone (V-zone), associated with learning-dependent behaviors. This zonal organization provides the structural framework for olfactory circuit function. However, the mechanisms driving OE zonal specification remain unclear. To investigate the initial segregation of the OE zones, we examined the role of Foxg1, a forkhead transcription factor expressed in the V-zone throughout life. Conditional deletion of <i>Foxg1</i> in Sox2-expressing OE stem cells, coupled with lineage tracing, revealed ectopic localization of <i>Foxg1</i>-lineage cells in the D-zone, without altering their regional molecular profile. These results demonstrate that Foxg1 is essential for zonal segregation but is dispensable for zone-specific molecular identity. We further revealed retinoic acid (RA) as an upstream morphogen regulating D-zone-specific gene expression. RA signaling is tightly confined to the D-zone, ensuring OE regional identity. These findings suggest that the establishment of D- and V-zones is driven by interactions between morphogenic signal and transcriptional program involving Foxg1, providing a molecular basis for understanding the formation of innate and learned olfactory circuits.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"67 6","pages":"314-330"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.70020","citationCount":"0","resultStr":"{\"title\":\"Foxg1 and Retinoic Acid Signaling Regulate Zonal Patterning in the Developing Olfactory Epithelium\",\"authors\":\"Anzu Kuriyama, Carina Hanashima\",\"doi\":\"10.1111/dgd.70020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Odor information processing begins in the olfactory epithelium (OE), which in mice is spatially divided into two zones: the dorsomedial zone (D-zone), responsible for innate aversive behaviors, and the ventrolateral zone (V-zone), associated with learning-dependent behaviors. This zonal organization provides the structural framework for olfactory circuit function. However, the mechanisms driving OE zonal specification remain unclear. To investigate the initial segregation of the OE zones, we examined the role of Foxg1, a forkhead transcription factor expressed in the V-zone throughout life. Conditional deletion of <i>Foxg1</i> in Sox2-expressing OE stem cells, coupled with lineage tracing, revealed ectopic localization of <i>Foxg1</i>-lineage cells in the D-zone, without altering their regional molecular profile. These results demonstrate that Foxg1 is essential for zonal segregation but is dispensable for zone-specific molecular identity. We further revealed retinoic acid (RA) as an upstream morphogen regulating D-zone-specific gene expression. RA signaling is tightly confined to the D-zone, ensuring OE regional identity. These findings suggest that the establishment of D- and V-zones is driven by interactions between morphogenic signal and transcriptional program involving Foxg1, providing a molecular basis for understanding the formation of innate and learned olfactory circuits.</p>\",\"PeriodicalId\":50589,\"journal\":{\"name\":\"Development Growth & Differentiation\",\"volume\":\"67 6\",\"pages\":\"314-330\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.70020\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development Growth & Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/dgd.70020\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Growth & Differentiation","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/dgd.70020","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Foxg1 and Retinoic Acid Signaling Regulate Zonal Patterning in the Developing Olfactory Epithelium
Odor information processing begins in the olfactory epithelium (OE), which in mice is spatially divided into two zones: the dorsomedial zone (D-zone), responsible for innate aversive behaviors, and the ventrolateral zone (V-zone), associated with learning-dependent behaviors. This zonal organization provides the structural framework for olfactory circuit function. However, the mechanisms driving OE zonal specification remain unclear. To investigate the initial segregation of the OE zones, we examined the role of Foxg1, a forkhead transcription factor expressed in the V-zone throughout life. Conditional deletion of Foxg1 in Sox2-expressing OE stem cells, coupled with lineage tracing, revealed ectopic localization of Foxg1-lineage cells in the D-zone, without altering their regional molecular profile. These results demonstrate that Foxg1 is essential for zonal segregation but is dispensable for zone-specific molecular identity. We further revealed retinoic acid (RA) as an upstream morphogen regulating D-zone-specific gene expression. RA signaling is tightly confined to the D-zone, ensuring OE regional identity. These findings suggest that the establishment of D- and V-zones is driven by interactions between morphogenic signal and transcriptional program involving Foxg1, providing a molecular basis for understanding the formation of innate and learned olfactory circuits.
期刊介绍:
Development Growth & Differentiation (DGD) publishes three types of articles: original, resource, and review papers.
Original papers are on any subjects having a context in development, growth, and differentiation processes in animals, plants, and microorganisms, dealing with molecular, genetic, cellular and organismal phenomena including metamorphosis and regeneration, while using experimental, theoretical, and bioinformatic approaches. Papers on other related fields are also welcome, such as stem cell biology, genomics, neuroscience, Evodevo, Ecodevo, and medical science as well as related methodology (new or revised techniques) and bioresources.
Resource papers describe a dataset, such as whole genome sequences and expressed sequence tags (ESTs), with some biological insights, which should be valuable for studying the subjects as mentioned above.
Submission of review papers is also encouraged, especially those providing a new scope based on the authors’ own study, or a summarization of their study series.