Pt/TiO2簇催化剂上逆水气转换反应活性位点的鉴定

IF 6.2
Li Feng,  and , Jin-Xun Liu*, 
{"title":"Pt/TiO2簇催化剂上逆水气转换反应活性位点的鉴定","authors":"Li Feng,&nbsp; and ,&nbsp;Jin-Xun Liu*,&nbsp;","doi":"10.1021/prechem.5c00010","DOIUrl":null,"url":null,"abstract":"<p >The reverse water–gas shift (RWGS) reaction is a key process for CO<sub>2</sub> conversion and sustainable fuel production, yet the nature of the active sites on Pt/TiO<sub>2</sub> cluster catalysts remains elusive. Using first-principles microkinetic simulations, we systematically investigated the catalytic behavior of Pt clusters on TiO<sub>2</sub> under operational reaction conditions. We studied three distinct catalytic sites─Pt cluster surfaces, oxygen vacancies (O<sub>V</sub>) on TiO<sub>2</sub>, and Pt–O<sub>V</sub>–Ti interfaces─and revealed that the Pt–O<sub>V</sub>–Ti interface exhibited the highest RWGS activity via a redox mechanism. This synergy enhances CO<sub>2</sub> activation and facilitates oxygen reduction more effectively than the isolated O<sub>V</sub> on TiO<sub>2</sub>, which show 4-fold lower activity. In contrast, CO-covered Pt clusters show minimal CO<sub>2</sub> activation but serve as H<sub>2</sub> dissociation sites, enabling hydrogen spillover to adjacent O<sub>V</sub> on TiO<sub>2</sub>, thereby sustaining the RWGS process. Kinetic analysis revealed OH reduction to H<sub>2</sub>O as the rate-determining step on both interfacial Pt–O<sub>V</sub>–Ti and at the O<sub>V</sub> on the TiO<sub>2–<i>X</i></sub> support. These findings highlight the pivotal role of the Pt–O<sub>V</sub>–Ti interface in driving the RWGS and offer a design strategy for optimizing high-temperature CO<sub>2</sub> hydrogenation catalysts by maximizing the number of interfacial active sites.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 7","pages":"380–388"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12308596/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of Active Sites for Reverse Water–Gas Shift Reactions on Pt/TiO2 Cluster Catalysts\",\"authors\":\"Li Feng,&nbsp; and ,&nbsp;Jin-Xun Liu*,&nbsp;\",\"doi\":\"10.1021/prechem.5c00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The reverse water–gas shift (RWGS) reaction is a key process for CO<sub>2</sub> conversion and sustainable fuel production, yet the nature of the active sites on Pt/TiO<sub>2</sub> cluster catalysts remains elusive. Using first-principles microkinetic simulations, we systematically investigated the catalytic behavior of Pt clusters on TiO<sub>2</sub> under operational reaction conditions. We studied three distinct catalytic sites─Pt cluster surfaces, oxygen vacancies (O<sub>V</sub>) on TiO<sub>2</sub>, and Pt–O<sub>V</sub>–Ti interfaces─and revealed that the Pt–O<sub>V</sub>–Ti interface exhibited the highest RWGS activity via a redox mechanism. This synergy enhances CO<sub>2</sub> activation and facilitates oxygen reduction more effectively than the isolated O<sub>V</sub> on TiO<sub>2</sub>, which show 4-fold lower activity. In contrast, CO-covered Pt clusters show minimal CO<sub>2</sub> activation but serve as H<sub>2</sub> dissociation sites, enabling hydrogen spillover to adjacent O<sub>V</sub> on TiO<sub>2</sub>, thereby sustaining the RWGS process. Kinetic analysis revealed OH reduction to H<sub>2</sub>O as the rate-determining step on both interfacial Pt–O<sub>V</sub>–Ti and at the O<sub>V</sub> on the TiO<sub>2–<i>X</i></sub> support. These findings highlight the pivotal role of the Pt–O<sub>V</sub>–Ti interface in driving the RWGS and offer a design strategy for optimizing high-temperature CO<sub>2</sub> hydrogenation catalysts by maximizing the number of interfacial active sites.</p>\",\"PeriodicalId\":29793,\"journal\":{\"name\":\"Precision Chemistry\",\"volume\":\"3 7\",\"pages\":\"380–388\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12308596/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/prechem.5c00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/prechem.5c00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

逆水气转换(RWGS)反应是二氧化碳转化和可持续燃料生产的关键过程,但Pt/TiO2簇催化剂上活性位点的性质尚不清楚。利用第一性原理微动力学模拟,我们系统地研究了Pt簇在操作反应条件下对TiO2的催化行为。我们研究了三个不同的催化位点Pt簇表面、TiO2上的氧空位(OV)和Pt-OV- ti界面,发现Pt-OV- ti界面通过氧化还原机制表现出最高的RWGS活性。这种协同作用增强了CO2的活化和氧还原,比分离的OV在TiO2上的活性低4倍。相比之下,co覆盖的Pt簇表现出最小的CO2活化,但作为H2解离位点,使氢溢出到TiO2上相邻的OV,从而维持RWGS过程。动力学分析表明,在Pt-OV-Ti界面和TiO2-X载体上的OV上,OH还原成H2O都是速率决定步骤。这些发现强调了Pt-OV-Ti界面在驱动RWGS中的关键作用,并提供了通过最大化界面活性位点数量来优化高温CO2加氢催化剂的设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Active Sites for Reverse Water–Gas Shift Reactions on Pt/TiO2 Cluster Catalysts

The reverse water–gas shift (RWGS) reaction is a key process for CO2 conversion and sustainable fuel production, yet the nature of the active sites on Pt/TiO2 cluster catalysts remains elusive. Using first-principles microkinetic simulations, we systematically investigated the catalytic behavior of Pt clusters on TiO2 under operational reaction conditions. We studied three distinct catalytic sites─Pt cluster surfaces, oxygen vacancies (OV) on TiO2, and Pt–OV–Ti interfaces─and revealed that the Pt–OV–Ti interface exhibited the highest RWGS activity via a redox mechanism. This synergy enhances CO2 activation and facilitates oxygen reduction more effectively than the isolated OV on TiO2, which show 4-fold lower activity. In contrast, CO-covered Pt clusters show minimal CO2 activation but serve as H2 dissociation sites, enabling hydrogen spillover to adjacent OV on TiO2, thereby sustaining the RWGS process. Kinetic analysis revealed OH reduction to H2O as the rate-determining step on both interfacial Pt–OV–Ti and at the OV on the TiO2–X support. These findings highlight the pivotal role of the Pt–OV–Ti interface in driving the RWGS and offer a design strategy for optimizing high-temperature CO2 hydrogenation catalysts by maximizing the number of interfacial active sites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Precision Chemistry
Precision Chemistry 精密化学技术-
CiteScore
0.80
自引率
0.00%
发文量
0
期刊介绍: Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信