{"title":"从噬菌体展示文库中鉴定用于总IgE检测的新型人IgE结合肽。","authors":"Sudtida Kaew-Amdee, Manlika Makornwattana, Ratthaphol Charlermroj","doi":"10.1038/s41598-025-12574-7","DOIUrl":null,"url":null,"abstract":"<p><p>Immunoglobulin E (IgE) plays a key role in allergic reactions and parasitic infections. Accurate detection of IgE is essential for the diagnosis and management of allergic diseases. Traditional detection methods, such as enzyme-linked immunosorbent assay (ELISA) and radioallergosorbent tests (RASTs), depend on complex antibody production processes. This study aimed to discover novel peptides that specifically bind to human IgE using phage display technology. A 12-mer phage-displayed peptide library was screened against native human IgE, resulting in the identification of sixteen high-specificity phage clones from an initial pool of 208 candidates. Six of these clones were selected for peptide synthesis and further evaluation using multiplex assays. All synthetic peptides demonstrated specific binding to human IgE, with no cross-reactivity observed against other human immunoglobulin isotypes (IgA, IgG, and IgM) or antibodies from other species (goat, mouse, and rat). Sensitivity analysis revealed that four peptides exhibited low detection limits, highlighting their potential for use in IgE quantification. This study is the first report synthetic peptides that specifically target human IgE. These peptides offer significant advantages over traditional antibody-based methods, including improved stability, simplicity, and cost-effectiveness. They represent promising candidates for developing new diagnostic tools for IgE detection. However, additional optimization and clinical validation are required to confirm their practical in diagnostic settings.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"27986"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314100/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of novel human IgE-binding peptides from a phage display library for total IgE detection.\",\"authors\":\"Sudtida Kaew-Amdee, Manlika Makornwattana, Ratthaphol Charlermroj\",\"doi\":\"10.1038/s41598-025-12574-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immunoglobulin E (IgE) plays a key role in allergic reactions and parasitic infections. Accurate detection of IgE is essential for the diagnosis and management of allergic diseases. Traditional detection methods, such as enzyme-linked immunosorbent assay (ELISA) and radioallergosorbent tests (RASTs), depend on complex antibody production processes. This study aimed to discover novel peptides that specifically bind to human IgE using phage display technology. A 12-mer phage-displayed peptide library was screened against native human IgE, resulting in the identification of sixteen high-specificity phage clones from an initial pool of 208 candidates. Six of these clones were selected for peptide synthesis and further evaluation using multiplex assays. All synthetic peptides demonstrated specific binding to human IgE, with no cross-reactivity observed against other human immunoglobulin isotypes (IgA, IgG, and IgM) or antibodies from other species (goat, mouse, and rat). Sensitivity analysis revealed that four peptides exhibited low detection limits, highlighting their potential for use in IgE quantification. This study is the first report synthetic peptides that specifically target human IgE. These peptides offer significant advantages over traditional antibody-based methods, including improved stability, simplicity, and cost-effectiveness. They represent promising candidates for developing new diagnostic tools for IgE detection. However, additional optimization and clinical validation are required to confirm their practical in diagnostic settings.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"27986\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314100/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-12574-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-12574-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Identification of novel human IgE-binding peptides from a phage display library for total IgE detection.
Immunoglobulin E (IgE) plays a key role in allergic reactions and parasitic infections. Accurate detection of IgE is essential for the diagnosis and management of allergic diseases. Traditional detection methods, such as enzyme-linked immunosorbent assay (ELISA) and radioallergosorbent tests (RASTs), depend on complex antibody production processes. This study aimed to discover novel peptides that specifically bind to human IgE using phage display technology. A 12-mer phage-displayed peptide library was screened against native human IgE, resulting in the identification of sixteen high-specificity phage clones from an initial pool of 208 candidates. Six of these clones were selected for peptide synthesis and further evaluation using multiplex assays. All synthetic peptides demonstrated specific binding to human IgE, with no cross-reactivity observed against other human immunoglobulin isotypes (IgA, IgG, and IgM) or antibodies from other species (goat, mouse, and rat). Sensitivity analysis revealed that four peptides exhibited low detection limits, highlighting their potential for use in IgE quantification. This study is the first report synthetic peptides that specifically target human IgE. These peptides offer significant advantages over traditional antibody-based methods, including improved stability, simplicity, and cost-effectiveness. They represent promising candidates for developing new diagnostic tools for IgE detection. However, additional optimization and clinical validation are required to confirm their practical in diagnostic settings.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.