{"title":"利用神经可塑性:启动在增强脑卒中后运动功能中的作用。","authors":"Sangeetha Madhavan","doi":"10.1177/09226028251358162","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke remains a leading cause of disability worldwide, highlighting the need for innovative neurorehabilitation strategies to enhance recovery. Recent advancements emphasize neuroplasticity-the brain's ability to reorganize and form new connections-through targeted interventions. Among these, cortical priming has emerged as a promising approach to enhance neuroplasticity and improve motor recovery post-stroke by modulating brain excitability for optimal motor learning. This review explores the role of cortical priming in stroke rehabilitation, highlighting its ability to enhance neural excitability and plasticity in motor-related brain regions. Various priming techniques, including non-invasive brain stimulation (rTMS, tDCS), deep brain stimulation (DBS), vagus nerve stimulation (VNS), brain-computer interfaces (BCIs), movement-based priming, aerobic exercise, and sensory stimulation, are examined. Despite promising findings, challenges remain in optimizing protocols and addressing individual variability. Future directions focus on biomarker-driven rehabilitation, personalized strategies, and large-scale trials to integrate cortical priming into clinical practice.</p>","PeriodicalId":21130,"journal":{"name":"Restorative neurology and neuroscience","volume":" ","pages":"9226028251358162"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing Neuroplasticity: The Role of Priming in Enhancing Post Stroke Motor Function.\",\"authors\":\"Sangeetha Madhavan\",\"doi\":\"10.1177/09226028251358162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stroke remains a leading cause of disability worldwide, highlighting the need for innovative neurorehabilitation strategies to enhance recovery. Recent advancements emphasize neuroplasticity-the brain's ability to reorganize and form new connections-through targeted interventions. Among these, cortical priming has emerged as a promising approach to enhance neuroplasticity and improve motor recovery post-stroke by modulating brain excitability for optimal motor learning. This review explores the role of cortical priming in stroke rehabilitation, highlighting its ability to enhance neural excitability and plasticity in motor-related brain regions. Various priming techniques, including non-invasive brain stimulation (rTMS, tDCS), deep brain stimulation (DBS), vagus nerve stimulation (VNS), brain-computer interfaces (BCIs), movement-based priming, aerobic exercise, and sensory stimulation, are examined. Despite promising findings, challenges remain in optimizing protocols and addressing individual variability. Future directions focus on biomarker-driven rehabilitation, personalized strategies, and large-scale trials to integrate cortical priming into clinical practice.</p>\",\"PeriodicalId\":21130,\"journal\":{\"name\":\"Restorative neurology and neuroscience\",\"volume\":\" \",\"pages\":\"9226028251358162\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Restorative neurology and neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09226028251358162\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Restorative neurology and neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09226028251358162","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Harnessing Neuroplasticity: The Role of Priming in Enhancing Post Stroke Motor Function.
Stroke remains a leading cause of disability worldwide, highlighting the need for innovative neurorehabilitation strategies to enhance recovery. Recent advancements emphasize neuroplasticity-the brain's ability to reorganize and form new connections-through targeted interventions. Among these, cortical priming has emerged as a promising approach to enhance neuroplasticity and improve motor recovery post-stroke by modulating brain excitability for optimal motor learning. This review explores the role of cortical priming in stroke rehabilitation, highlighting its ability to enhance neural excitability and plasticity in motor-related brain regions. Various priming techniques, including non-invasive brain stimulation (rTMS, tDCS), deep brain stimulation (DBS), vagus nerve stimulation (VNS), brain-computer interfaces (BCIs), movement-based priming, aerobic exercise, and sensory stimulation, are examined. Despite promising findings, challenges remain in optimizing protocols and addressing individual variability. Future directions focus on biomarker-driven rehabilitation, personalized strategies, and large-scale trials to integrate cortical priming into clinical practice.
期刊介绍:
This interdisciplinary journal publishes papers relating to the plasticity and response of the nervous system to accidental or experimental injuries and their interventions, transplantation, neurodegenerative disorders and experimental strategies to improve regeneration or functional recovery and rehabilitation. Experimental and clinical research papers adopting fresh conceptual approaches are encouraged. The overriding criteria for publication are novelty, significant experimental or clinical relevance and interest to a multidisciplinary audience. Experiments on un-anesthetized animals should conform with the standards for the use of laboratory animals as established by the Institute of Laboratory Animal Resources, US National Academy of Sciences. Experiments in which paralytic agents are used must be justified. Patient identity should be concealed. All manuscripts are sent out for blind peer review to editorial board members or outside reviewers. Restorative Neurology and Neuroscience is a member of Neuroscience Peer Review Consortium.