{"title":"基于迁移学习的可解释视觉变换器的干旱胁迫有效识别。","authors":"Aswini Kumar Patra, Ankit Varshney, Lingaraj Sahoo","doi":"10.1007/s11103-025-01620-7","DOIUrl":null,"url":null,"abstract":"<p><p>Early detection of drought stress is critical for taking timely measures for reducing crop loss before the drought impact becomes irreversible. The subtle phenotypical and physiological changes in response to drought stress are captured by non-invasive imaging techniques and these imaging data serve as valuable resource for machine learning methods to identify drought stress. While convolutional neural networks are in wide use, vision transformers (ViTs) present a promising alternative in capturing long-range dependencies and intricate spatial relationships, thereby enhancing the detection of subtle indicators of drought stress. We propose an explainable deep learning pipeline that leverages the power of ViTs for drought stress detection in potato crops using aerial imagery. We applied two distinct approaches: a synergistic combination of ViT and support vector machine (SVM), where ViT extracts intricate spatial features from aerial images, and SVM classifies the crops as stressed or healthy and an end-to-end approach using a dedicated classification layer within ViT to directly detect drought stress. Our key findings explain the ViT model's decision-making process by visualizing attention maps. These maps highlight the specific spatial features within the aerial images that the ViT model focuses as the drought stress signature. Our findings demonstrate that the proposed methods not only achieve high accuracy in drought stress identification but also shedding light on the diverse subtle plant features associated with drought stress. This offers a robust and interpretable solution for drought stress monitoring for farmers to undertake informed decisions for improved crop management.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 4","pages":"98"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An explainable vision transformer with transfer learning based efficient drought stress identification.\",\"authors\":\"Aswini Kumar Patra, Ankit Varshney, Lingaraj Sahoo\",\"doi\":\"10.1007/s11103-025-01620-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early detection of drought stress is critical for taking timely measures for reducing crop loss before the drought impact becomes irreversible. The subtle phenotypical and physiological changes in response to drought stress are captured by non-invasive imaging techniques and these imaging data serve as valuable resource for machine learning methods to identify drought stress. While convolutional neural networks are in wide use, vision transformers (ViTs) present a promising alternative in capturing long-range dependencies and intricate spatial relationships, thereby enhancing the detection of subtle indicators of drought stress. We propose an explainable deep learning pipeline that leverages the power of ViTs for drought stress detection in potato crops using aerial imagery. We applied two distinct approaches: a synergistic combination of ViT and support vector machine (SVM), where ViT extracts intricate spatial features from aerial images, and SVM classifies the crops as stressed or healthy and an end-to-end approach using a dedicated classification layer within ViT to directly detect drought stress. Our key findings explain the ViT model's decision-making process by visualizing attention maps. These maps highlight the specific spatial features within the aerial images that the ViT model focuses as the drought stress signature. Our findings demonstrate that the proposed methods not only achieve high accuracy in drought stress identification but also shedding light on the diverse subtle plant features associated with drought stress. This offers a robust and interpretable solution for drought stress monitoring for farmers to undertake informed decisions for improved crop management.</p>\",\"PeriodicalId\":20064,\"journal\":{\"name\":\"Plant Molecular Biology\",\"volume\":\"115 4\",\"pages\":\"98\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11103-025-01620-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01620-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
An explainable vision transformer with transfer learning based efficient drought stress identification.
Early detection of drought stress is critical for taking timely measures for reducing crop loss before the drought impact becomes irreversible. The subtle phenotypical and physiological changes in response to drought stress are captured by non-invasive imaging techniques and these imaging data serve as valuable resource for machine learning methods to identify drought stress. While convolutional neural networks are in wide use, vision transformers (ViTs) present a promising alternative in capturing long-range dependencies and intricate spatial relationships, thereby enhancing the detection of subtle indicators of drought stress. We propose an explainable deep learning pipeline that leverages the power of ViTs for drought stress detection in potato crops using aerial imagery. We applied two distinct approaches: a synergistic combination of ViT and support vector machine (SVM), where ViT extracts intricate spatial features from aerial images, and SVM classifies the crops as stressed or healthy and an end-to-end approach using a dedicated classification layer within ViT to directly detect drought stress. Our key findings explain the ViT model's decision-making process by visualizing attention maps. These maps highlight the specific spatial features within the aerial images that the ViT model focuses as the drought stress signature. Our findings demonstrate that the proposed methods not only achieve high accuracy in drought stress identification but also shedding light on the diverse subtle plant features associated with drought stress. This offers a robust and interpretable solution for drought stress monitoring for farmers to undertake informed decisions for improved crop management.
期刊介绍:
Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.