{"title":"花椒异淀粉酶CMI294C具有优良的热稳定性和二价阳离子敏感性。","authors":"Keisuke Okada, Taichi Someya, Takashi Osanai","doi":"10.1007/s11103-025-01623-4","DOIUrl":null,"url":null,"abstract":"<p><p>A storage polysaccharide in the red alga Cyanidioschyzon merolae is semi-amylopectin, a glucan with properties intermediate between noncrystalline glycogen and semicrystalline amylopectin. The debranching enzyme isoamylase plays a crucial role in determining the semicrystalline nature of glucans. In amylopectin-storing organisms, isoamylases consist of the isozymes ISA1, ISA2, and ISA3, with the former two primarily responsible for semicrystallinity. While the semicrystallinity of C. merolae semi-amylopectin is weaker than that of amylopectin, it retains a semicrystalline structure. Based on a previous analysis of isoamylase-deficient strains of C. merolae, the isoform CMI294C is the main contributor to glucan synthesis. Although the biochemical properties of isoamylases involved in amylopectin synthesis have been characterized, those of isoamylases involved in semi-amylopectin synthesis remain largely unknown. Here, we performed a detailed biochemical analysis of CMI294C to gain insights of isoamylases in semi-amylopectin synthesis. Similar to isoamylases in amylopectin-synthesizing organisms, CMI294C hydrolyzes amylopectin more efficiently than glycogen. However, unlike typical isoamylases, CMI294C is uniquely more active against pullulan than against glycogen; and it is strongly inhibited by Zn²⁺. Our results indicate that CMI294C can be potentially used for industrial maltose production due to its enzymatic properties. Overall, our findings provide molecular insights into the isoamylase in glucan structure modulation and enhance our understanding of glucan metabolism in C. merolae.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 4","pages":"99"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313807/pdf/","citationCount":"0","resultStr":"{\"title\":\"Superior thermostability and divalent cation sensitivity of isoamylase CMI294C from Cyanidioschyzon merolae.\",\"authors\":\"Keisuke Okada, Taichi Someya, Takashi Osanai\",\"doi\":\"10.1007/s11103-025-01623-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A storage polysaccharide in the red alga Cyanidioschyzon merolae is semi-amylopectin, a glucan with properties intermediate between noncrystalline glycogen and semicrystalline amylopectin. The debranching enzyme isoamylase plays a crucial role in determining the semicrystalline nature of glucans. In amylopectin-storing organisms, isoamylases consist of the isozymes ISA1, ISA2, and ISA3, with the former two primarily responsible for semicrystallinity. While the semicrystallinity of C. merolae semi-amylopectin is weaker than that of amylopectin, it retains a semicrystalline structure. Based on a previous analysis of isoamylase-deficient strains of C. merolae, the isoform CMI294C is the main contributor to glucan synthesis. Although the biochemical properties of isoamylases involved in amylopectin synthesis have been characterized, those of isoamylases involved in semi-amylopectin synthesis remain largely unknown. Here, we performed a detailed biochemical analysis of CMI294C to gain insights of isoamylases in semi-amylopectin synthesis. Similar to isoamylases in amylopectin-synthesizing organisms, CMI294C hydrolyzes amylopectin more efficiently than glycogen. However, unlike typical isoamylases, CMI294C is uniquely more active against pullulan than against glycogen; and it is strongly inhibited by Zn²⁺. Our results indicate that CMI294C can be potentially used for industrial maltose production due to its enzymatic properties. Overall, our findings provide molecular insights into the isoamylase in glucan structure modulation and enhance our understanding of glucan metabolism in C. merolae.</p>\",\"PeriodicalId\":20064,\"journal\":{\"name\":\"Plant Molecular Biology\",\"volume\":\"115 4\",\"pages\":\"99\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313807/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11103-025-01623-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01623-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Superior thermostability and divalent cation sensitivity of isoamylase CMI294C from Cyanidioschyzon merolae.
A storage polysaccharide in the red alga Cyanidioschyzon merolae is semi-amylopectin, a glucan with properties intermediate between noncrystalline glycogen and semicrystalline amylopectin. The debranching enzyme isoamylase plays a crucial role in determining the semicrystalline nature of glucans. In amylopectin-storing organisms, isoamylases consist of the isozymes ISA1, ISA2, and ISA3, with the former two primarily responsible for semicrystallinity. While the semicrystallinity of C. merolae semi-amylopectin is weaker than that of amylopectin, it retains a semicrystalline structure. Based on a previous analysis of isoamylase-deficient strains of C. merolae, the isoform CMI294C is the main contributor to glucan synthesis. Although the biochemical properties of isoamylases involved in amylopectin synthesis have been characterized, those of isoamylases involved in semi-amylopectin synthesis remain largely unknown. Here, we performed a detailed biochemical analysis of CMI294C to gain insights of isoamylases in semi-amylopectin synthesis. Similar to isoamylases in amylopectin-synthesizing organisms, CMI294C hydrolyzes amylopectin more efficiently than glycogen. However, unlike typical isoamylases, CMI294C is uniquely more active against pullulan than against glycogen; and it is strongly inhibited by Zn²⁺. Our results indicate that CMI294C can be potentially used for industrial maltose production due to its enzymatic properties. Overall, our findings provide molecular insights into the isoamylase in glucan structure modulation and enhance our understanding of glucan metabolism in C. merolae.
期刊介绍:
Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.