花椒异淀粉酶CMI294C具有优良的热稳定性和二价阳离子敏感性。

IF 3.8 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Keisuke Okada, Taichi Someya, Takashi Osanai
{"title":"花椒异淀粉酶CMI294C具有优良的热稳定性和二价阳离子敏感性。","authors":"Keisuke Okada, Taichi Someya, Takashi Osanai","doi":"10.1007/s11103-025-01623-4","DOIUrl":null,"url":null,"abstract":"<p><p>A storage polysaccharide in the red alga Cyanidioschyzon merolae is semi-amylopectin, a glucan with properties intermediate between noncrystalline glycogen and semicrystalline amylopectin. The debranching enzyme isoamylase plays a crucial role in determining the semicrystalline nature of glucans. In amylopectin-storing organisms, isoamylases consist of the isozymes ISA1, ISA2, and ISA3, with the former two primarily responsible for semicrystallinity. While the semicrystallinity of C. merolae semi-amylopectin is weaker than that of amylopectin, it retains a semicrystalline structure. Based on a previous analysis of isoamylase-deficient strains of C. merolae, the isoform CMI294C is the main contributor to glucan synthesis. Although the biochemical properties of isoamylases involved in amylopectin synthesis have been characterized, those of isoamylases involved in semi-amylopectin synthesis remain largely unknown. Here, we performed a detailed biochemical analysis of CMI294C to gain insights of isoamylases in semi-amylopectin synthesis. Similar to isoamylases in amylopectin-synthesizing organisms, CMI294C hydrolyzes amylopectin more efficiently than glycogen. However, unlike typical isoamylases, CMI294C is uniquely more active against pullulan than against glycogen; and it is strongly inhibited by Zn²⁺. Our results indicate that CMI294C can be potentially used for industrial maltose production due to its enzymatic properties. Overall, our findings provide molecular insights into the isoamylase in glucan structure modulation and enhance our understanding of glucan metabolism in C. merolae.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 4","pages":"99"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313807/pdf/","citationCount":"0","resultStr":"{\"title\":\"Superior thermostability and divalent cation sensitivity of isoamylase CMI294C from Cyanidioschyzon merolae.\",\"authors\":\"Keisuke Okada, Taichi Someya, Takashi Osanai\",\"doi\":\"10.1007/s11103-025-01623-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A storage polysaccharide in the red alga Cyanidioschyzon merolae is semi-amylopectin, a glucan with properties intermediate between noncrystalline glycogen and semicrystalline amylopectin. The debranching enzyme isoamylase plays a crucial role in determining the semicrystalline nature of glucans. In amylopectin-storing organisms, isoamylases consist of the isozymes ISA1, ISA2, and ISA3, with the former two primarily responsible for semicrystallinity. While the semicrystallinity of C. merolae semi-amylopectin is weaker than that of amylopectin, it retains a semicrystalline structure. Based on a previous analysis of isoamylase-deficient strains of C. merolae, the isoform CMI294C is the main contributor to glucan synthesis. Although the biochemical properties of isoamylases involved in amylopectin synthesis have been characterized, those of isoamylases involved in semi-amylopectin synthesis remain largely unknown. Here, we performed a detailed biochemical analysis of CMI294C to gain insights of isoamylases in semi-amylopectin synthesis. Similar to isoamylases in amylopectin-synthesizing organisms, CMI294C hydrolyzes amylopectin more efficiently than glycogen. However, unlike typical isoamylases, CMI294C is uniquely more active against pullulan than against glycogen; and it is strongly inhibited by Zn²⁺. Our results indicate that CMI294C can be potentially used for industrial maltose production due to its enzymatic properties. Overall, our findings provide molecular insights into the isoamylase in glucan structure modulation and enhance our understanding of glucan metabolism in C. merolae.</p>\",\"PeriodicalId\":20064,\"journal\":{\"name\":\"Plant Molecular Biology\",\"volume\":\"115 4\",\"pages\":\"99\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313807/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11103-025-01623-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01623-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

红藻中的一种储存多糖是半支链淀粉,一种介于非结晶糖原和半结晶支链淀粉之间的葡聚糖。脱支酶异淀粉酶在决定葡聚糖的半结晶性质方面起着至关重要的作用。在储存支链淀粉的生物体中,同工淀粉酶由ISA1、ISA2和ISA3同工酶组成,其中前两个同工酶主要负责半结晶性。虽然墨罗拉半支链淀粉的半结晶度比支链淀粉弱,但它保留了半结晶结构。根据先前对merolae异淀粉酶缺陷菌株的分析,同种异构体CMI294C是葡聚糖合成的主要贡献者。虽然参与支链淀粉合成的异淀粉酶的生化特性已经被表征,但参与半支链淀粉合成的异淀粉酶的生化特性仍然很大程度上未知。在这里,我们对CMI294C进行了详细的生化分析,以获得半支链淀粉合成中异淀粉酶的见解。与支链淀粉合成生物中的异淀粉酶类似,CMI294C比糖原更有效地水解支链淀粉。然而,与典型的异淀粉酶不同,CMI294C对普鲁兰的活性比对糖原的活性更强;并被Zn 2 +强烈抑制。我们的研究结果表明,CMI294C由于其酶促特性,可以潜在地用于工业麦芽糖生产。总的来说,我们的研究结果为异淀粉酶在葡聚糖结构调节中的分子作用提供了新的见解,并增强了我们对葡聚糖代谢的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superior thermostability and divalent cation sensitivity of isoamylase CMI294C from Cyanidioschyzon merolae.

A storage polysaccharide in the red alga Cyanidioschyzon merolae is semi-amylopectin, a glucan with properties intermediate between noncrystalline glycogen and semicrystalline amylopectin. The debranching enzyme isoamylase plays a crucial role in determining the semicrystalline nature of glucans. In amylopectin-storing organisms, isoamylases consist of the isozymes ISA1, ISA2, and ISA3, with the former two primarily responsible for semicrystallinity. While the semicrystallinity of C. merolae semi-amylopectin is weaker than that of amylopectin, it retains a semicrystalline structure. Based on a previous analysis of isoamylase-deficient strains of C. merolae, the isoform CMI294C is the main contributor to glucan synthesis. Although the biochemical properties of isoamylases involved in amylopectin synthesis have been characterized, those of isoamylases involved in semi-amylopectin synthesis remain largely unknown. Here, we performed a detailed biochemical analysis of CMI294C to gain insights of isoamylases in semi-amylopectin synthesis. Similar to isoamylases in amylopectin-synthesizing organisms, CMI294C hydrolyzes amylopectin more efficiently than glycogen. However, unlike typical isoamylases, CMI294C is uniquely more active against pullulan than against glycogen; and it is strongly inhibited by Zn²⁺. Our results indicate that CMI294C can be potentially used for industrial maltose production due to its enzymatic properties. Overall, our findings provide molecular insights into the isoamylase in glucan structure modulation and enhance our understanding of glucan metabolism in C. merolae.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Molecular Biology
Plant Molecular Biology 生物-生化与分子生物学
自引率
2.00%
发文量
95
审稿时长
1.4 months
期刊介绍: Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信