胆固醇通过统一的生物物理规律调节膜弹性。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Teshani Kumarage, Sudipta Gupta, Nicholas B Morris, Fathima T Doole, Haden L Scott, Laura-Roxana Stingaciu, Sai Venkatesh Pingali, John Katsaras, George Khelashvili, Milka Doktorova, Michael F Brown, Rana Ashkar
{"title":"胆固醇通过统一的生物物理规律调节膜弹性。","authors":"Teshani Kumarage, Sudipta Gupta, Nicholas B Morris, Fathima T Doole, Haden L Scott, Laura-Roxana Stingaciu, Sai Venkatesh Pingali, John Katsaras, George Khelashvili, Milka Doktorova, Michael F Brown, Rana Ashkar","doi":"10.1038/s41467-025-62106-0","DOIUrl":null,"url":null,"abstract":"<p><p>Cholesterol and lipid unsaturation underlie a balance of opposing forces that features prominently in adaptive cell responses to diet and environmental cues. These competing factors have resulted in contradictory observations of membrane elasticity across different measurement scales, requiring chemical specificity to explain incompatible structural and elastic effects. Here, we demonstrate that - unlike macroscopic observations - lipid membranes exhibit a unified elastic behavior in the mesoscopic regime between molecular and macroscopic dimensions. Using nuclear spin techniques and computational analysis, we find that mesoscopic bending moduli follow a universal dependence on the lipid packing density regardless of cholesterol content, lipid unsaturation, or temperature. Our observations reveal that compositional complexity can be explained by simple biophysical laws that directly map membrane elasticity to molecular packing associated with biological function, curvature transformations, and protein interactions. The obtained scaling laws closely align with theoretical predictions based on conformational chain entropy and elastic stress fields. These findings provide unique insights into the membrane design rules optimized by nature and unlock predictive capabilities for guiding the functional performance of lipid-based materials in synthetic biology and real-world applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"7024"},"PeriodicalIF":15.7000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313887/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cholesterol modulates membrane elasticity via unified biophysical laws.\",\"authors\":\"Teshani Kumarage, Sudipta Gupta, Nicholas B Morris, Fathima T Doole, Haden L Scott, Laura-Roxana Stingaciu, Sai Venkatesh Pingali, John Katsaras, George Khelashvili, Milka Doktorova, Michael F Brown, Rana Ashkar\",\"doi\":\"10.1038/s41467-025-62106-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cholesterol and lipid unsaturation underlie a balance of opposing forces that features prominently in adaptive cell responses to diet and environmental cues. These competing factors have resulted in contradictory observations of membrane elasticity across different measurement scales, requiring chemical specificity to explain incompatible structural and elastic effects. Here, we demonstrate that - unlike macroscopic observations - lipid membranes exhibit a unified elastic behavior in the mesoscopic regime between molecular and macroscopic dimensions. Using nuclear spin techniques and computational analysis, we find that mesoscopic bending moduli follow a universal dependence on the lipid packing density regardless of cholesterol content, lipid unsaturation, or temperature. Our observations reveal that compositional complexity can be explained by simple biophysical laws that directly map membrane elasticity to molecular packing associated with biological function, curvature transformations, and protein interactions. The obtained scaling laws closely align with theoretical predictions based on conformational chain entropy and elastic stress fields. These findings provide unique insights into the membrane design rules optimized by nature and unlock predictive capabilities for guiding the functional performance of lipid-based materials in synthetic biology and real-world applications.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"7024\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313887/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62106-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62106-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

胆固醇和脂质不饱和是一种对立力量平衡的基础,这种力量在细胞对饮食和环境的适应性反应中占有突出地位。这些相互竞争的因素导致了膜弹性在不同测量尺度上的相互矛盾的观察结果,需要化学特异性来解释不相容的结构和弹性效应。在这里,我们证明,与宏观观察不同,脂质膜在分子和宏观尺度之间的介观制度中表现出统一的弹性行为。利用核自旋技术和计算分析,我们发现介观弯曲模量与脂质堆积密度有关,与胆固醇含量、脂质不饱和度或温度无关。我们的观察表明,成分的复杂性可以用简单的生物物理定律来解释,这些定律直接将膜弹性映射到与生物功能、曲率转换和蛋白质相互作用相关的分子包装上。得到的标度定律与基于构象链熵和弹性应力场的理论预测基本一致。这些发现为自然优化的膜设计规则提供了独特的见解,并为指导合成生物学和现实应用中的脂基材料的功能性能解锁了预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cholesterol modulates membrane elasticity via unified biophysical laws.

Cholesterol modulates membrane elasticity via unified biophysical laws.

Cholesterol and lipid unsaturation underlie a balance of opposing forces that features prominently in adaptive cell responses to diet and environmental cues. These competing factors have resulted in contradictory observations of membrane elasticity across different measurement scales, requiring chemical specificity to explain incompatible structural and elastic effects. Here, we demonstrate that - unlike macroscopic observations - lipid membranes exhibit a unified elastic behavior in the mesoscopic regime between molecular and macroscopic dimensions. Using nuclear spin techniques and computational analysis, we find that mesoscopic bending moduli follow a universal dependence on the lipid packing density regardless of cholesterol content, lipid unsaturation, or temperature. Our observations reveal that compositional complexity can be explained by simple biophysical laws that directly map membrane elasticity to molecular packing associated with biological function, curvature transformations, and protein interactions. The obtained scaling laws closely align with theoretical predictions based on conformational chain entropy and elastic stress fields. These findings provide unique insights into the membrane design rules optimized by nature and unlock predictive capabilities for guiding the functional performance of lipid-based materials in synthetic biology and real-world applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信