{"title":"合成微生物群落将猪液粪转化为微生物肥料的新策略。","authors":"Bihui Wang, Chunling Chang, Zhigang Wang, Yunlong Hu, Weihui Xu, Wenjing Chen, Neil McLaughlin","doi":"10.1186/s12934-025-02801-1","DOIUrl":null,"url":null,"abstract":"<p><p>The pig industry generates copious amounts of liquid pig manure (LPM), which poses a great challenge to the environment; conventional treatment of the manure is often time-consuming and inefficient. We developed a novel technique for converting LPM into liquid microbial fertilizer with two steps: (1) screened ammonia nitrogen-degrading strains and synthetic microbial communities (SynCom) were used in combination with H<sub>2</sub>O<sub>2</sub> for the biological deodorization of LPM; and (2) the bio-deodorized and autoclaved LPM was then inoculated with screened SynCom2 to produce liquid microbial fertilizers. The results of bio-deodorization demonstrated that both single ammonia nitrogen-degrading strains and SynCom1 reduced over 90% of the odor and GHGs emissions (NH<sub>3</sub>, H<sub>2</sub>S, CO<sub>2</sub> and CH<sub>4</sub>) from LPM, and decreased the pH, chemical oxygen demand (COD), ammoniacal nitrogen (NH<sub>4</sub><sup>+</sup>-N) and EC to varying extents. The SynCom1 was able to completely eliminate malodorous volatile organic compounds (p-methyl phenol) from LPM, outperforming single ammonia nitrogen-degrading strains. The deodorized LPM treated with SynCom2 exhibited high levels of nutrient concentration (31.58 g/L of total carbon and 3.81 g/L of total nitrogen), microbial biomass (up to 1.92 × 10<sup>10</sup> CFU/mL), plant safety and maturity (germination index > 100%), indicating suitability as microbial fertilizer. Cultivation experiments demonstrated a significant increase of over 70% in shoot length, root length, fresh weight and dry weight of rice seedlings when microbial fertilizers were applied in black soil. Overall, our study provided a valuable direction for the development of potential industrial applications.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"175"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12315464/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel strategy for synthetic microbial community conversion of liquid pig manure into microbial fertilizer.\",\"authors\":\"Bihui Wang, Chunling Chang, Zhigang Wang, Yunlong Hu, Weihui Xu, Wenjing Chen, Neil McLaughlin\",\"doi\":\"10.1186/s12934-025-02801-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pig industry generates copious amounts of liquid pig manure (LPM), which poses a great challenge to the environment; conventional treatment of the manure is often time-consuming and inefficient. We developed a novel technique for converting LPM into liquid microbial fertilizer with two steps: (1) screened ammonia nitrogen-degrading strains and synthetic microbial communities (SynCom) were used in combination with H<sub>2</sub>O<sub>2</sub> for the biological deodorization of LPM; and (2) the bio-deodorized and autoclaved LPM was then inoculated with screened SynCom2 to produce liquid microbial fertilizers. The results of bio-deodorization demonstrated that both single ammonia nitrogen-degrading strains and SynCom1 reduced over 90% of the odor and GHGs emissions (NH<sub>3</sub>, H<sub>2</sub>S, CO<sub>2</sub> and CH<sub>4</sub>) from LPM, and decreased the pH, chemical oxygen demand (COD), ammoniacal nitrogen (NH<sub>4</sub><sup>+</sup>-N) and EC to varying extents. The SynCom1 was able to completely eliminate malodorous volatile organic compounds (p-methyl phenol) from LPM, outperforming single ammonia nitrogen-degrading strains. The deodorized LPM treated with SynCom2 exhibited high levels of nutrient concentration (31.58 g/L of total carbon and 3.81 g/L of total nitrogen), microbial biomass (up to 1.92 × 10<sup>10</sup> CFU/mL), plant safety and maturity (germination index > 100%), indicating suitability as microbial fertilizer. Cultivation experiments demonstrated a significant increase of over 70% in shoot length, root length, fresh weight and dry weight of rice seedlings when microbial fertilizers were applied in black soil. Overall, our study provided a valuable direction for the development of potential industrial applications.</p>\",\"PeriodicalId\":18582,\"journal\":{\"name\":\"Microbial Cell Factories\",\"volume\":\"24 1\",\"pages\":\"175\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12315464/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell Factories\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12934-025-02801-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02801-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A novel strategy for synthetic microbial community conversion of liquid pig manure into microbial fertilizer.
The pig industry generates copious amounts of liquid pig manure (LPM), which poses a great challenge to the environment; conventional treatment of the manure is often time-consuming and inefficient. We developed a novel technique for converting LPM into liquid microbial fertilizer with two steps: (1) screened ammonia nitrogen-degrading strains and synthetic microbial communities (SynCom) were used in combination with H2O2 for the biological deodorization of LPM; and (2) the bio-deodorized and autoclaved LPM was then inoculated with screened SynCom2 to produce liquid microbial fertilizers. The results of bio-deodorization demonstrated that both single ammonia nitrogen-degrading strains and SynCom1 reduced over 90% of the odor and GHGs emissions (NH3, H2S, CO2 and CH4) from LPM, and decreased the pH, chemical oxygen demand (COD), ammoniacal nitrogen (NH4+-N) and EC to varying extents. The SynCom1 was able to completely eliminate malodorous volatile organic compounds (p-methyl phenol) from LPM, outperforming single ammonia nitrogen-degrading strains. The deodorized LPM treated with SynCom2 exhibited high levels of nutrient concentration (31.58 g/L of total carbon and 3.81 g/L of total nitrogen), microbial biomass (up to 1.92 × 1010 CFU/mL), plant safety and maturity (germination index > 100%), indicating suitability as microbial fertilizer. Cultivation experiments demonstrated a significant increase of over 70% in shoot length, root length, fresh weight and dry weight of rice seedlings when microbial fertilizers were applied in black soil. Overall, our study provided a valuable direction for the development of potential industrial applications.
期刊介绍:
Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology.
The journal is divided into the following editorial sections:
-Metabolic engineering
-Synthetic biology
-Whole-cell biocatalysis
-Microbial regulations
-Recombinant protein production/bioprocessing
-Production of natural compounds
-Systems biology of cell factories
-Microbial production processes
-Cell-free systems