线粒体Ca2+在中风中的作用:从分子机制到治疗策略(综述)。

IF 3.5 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular medicine reports Pub Date : 2025-10-01 Epub Date: 2025-08-01 DOI:10.3892/mmr.2025.13636
Yanlin Liu, Wenjie Jin, Huixin Zhou, Xiaomei Wang, Hongbin Ren, Xibing Yang, Kaitao Luo, Xiaobing Dou
{"title":"线粒体Ca2+在中风中的作用:从分子机制到治疗策略(综述)。","authors":"Yanlin Liu, Wenjie Jin, Huixin Zhou, Xiaomei Wang, Hongbin Ren, Xibing Yang, Kaitao Luo, Xiaobing Dou","doi":"10.3892/mmr.2025.13636","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria serve a pivotal role in the pathological mechanisms of stroke, particularly in the regulation of intracellular calcium homeostasis. Stroke‑induced ischemia and reperfusion injury frequently result in disruptions of mitochondrial calcium ion (Ca<sup>2+</sup>) transport, characterized by Ca<sup>2+</sup> overload. This imbalance directly impairs mitochondrial function and triggers neuronal death. Mitochondrial Ca<sup>2+</sup> transport involves calcium influx, primarily mediated by the mitochondrial calcium uniporter (MCU) complex, and efflux, primarily through the sodium‑calcium exchanger (NCLX), making this mechanism a critical therapeutic target in stroke. The present review systematically explores the central role of mitochondrial Ca2+ transport in ischemia/reperfusion injury, with an in‑depth analysis of its pathological mechanisms in cellular energy metabolism, oxidative stress and apoptotic signaling pathways. Additionally, this review summarizes recent advancements in therapeutic strategies targeting mitochondrial Ca<sup>2+</sup> transport, including MCU inhibitors, NCLX activators, antioxidant therapies and combination treatments. It also highlights the potential of Ca<sup>2+</sup> signaling for early stroke diagnosis and reviews progress in dynamic monitoring technologies for mitochondrial Ca<sup>2+</sup>, such as fluorescence probes and super‑resolution microscopy. Despite significant progress in basic research, challenges remain in translating these findings into clinical applications. Future efforts should focus on elucidating the regulatory mechanisms of mitochondrial Ca<sup>2+</sup>, developing diagnostic tools and optimizing therapeutic interventions to improve stroke prognosis and enhance the quality of life of patients.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"32 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12332370/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of mitochondrial Ca<sup>2+</sup> in stroke: From molecular mechanism to treatment strategy (Review).\",\"authors\":\"Yanlin Liu, Wenjie Jin, Huixin Zhou, Xiaomei Wang, Hongbin Ren, Xibing Yang, Kaitao Luo, Xiaobing Dou\",\"doi\":\"10.3892/mmr.2025.13636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria serve a pivotal role in the pathological mechanisms of stroke, particularly in the regulation of intracellular calcium homeostasis. Stroke‑induced ischemia and reperfusion injury frequently result in disruptions of mitochondrial calcium ion (Ca<sup>2+</sup>) transport, characterized by Ca<sup>2+</sup> overload. This imbalance directly impairs mitochondrial function and triggers neuronal death. Mitochondrial Ca<sup>2+</sup> transport involves calcium influx, primarily mediated by the mitochondrial calcium uniporter (MCU) complex, and efflux, primarily through the sodium‑calcium exchanger (NCLX), making this mechanism a critical therapeutic target in stroke. The present review systematically explores the central role of mitochondrial Ca2+ transport in ischemia/reperfusion injury, with an in‑depth analysis of its pathological mechanisms in cellular energy metabolism, oxidative stress and apoptotic signaling pathways. Additionally, this review summarizes recent advancements in therapeutic strategies targeting mitochondrial Ca<sup>2+</sup> transport, including MCU inhibitors, NCLX activators, antioxidant therapies and combination treatments. It also highlights the potential of Ca<sup>2+</sup> signaling for early stroke diagnosis and reviews progress in dynamic monitoring technologies for mitochondrial Ca<sup>2+</sup>, such as fluorescence probes and super‑resolution microscopy. Despite significant progress in basic research, challenges remain in translating these findings into clinical applications. Future efforts should focus on elucidating the regulatory mechanisms of mitochondrial Ca<sup>2+</sup>, developing diagnostic tools and optimizing therapeutic interventions to improve stroke prognosis and enhance the quality of life of patients.</p>\",\"PeriodicalId\":18818,\"journal\":{\"name\":\"Molecular medicine reports\",\"volume\":\"32 4\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12332370/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular medicine reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/mmr.2025.13636\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2025.13636","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

线粒体在中风的病理机制中起着关键作用,特别是在调节细胞内钙稳态方面。卒中引起的缺血和再灌注损伤经常导致线粒体钙离子(Ca2+)运输的中断,其特征是Ca2+超载。这种不平衡直接损害线粒体功能并引发神经元死亡。线粒体Ca2+转运涉及主要由线粒体钙单转运体(MCU)复合物介导的钙内流和主要通过钠钙交换器(NCLX)介导的钙外排,使该机制成为中风的关键治疗靶点。本文系统探讨了线粒体Ca2+转运在缺血/再灌注损伤中的核心作用,并深入分析了其在细胞能量代谢、氧化应激和凋亡信号通路中的病理机制。此外,本文综述了针对线粒体Ca2+转运的治疗策略的最新进展,包括MCU抑制剂、NCLX激活剂、抗氧化疗法和联合治疗。它还强调了Ca2+信号在早期中风诊断中的潜力,并回顾了线粒体Ca2+动态监测技术的进展,如荧光探针和超分辨率显微镜。尽管基础研究取得了重大进展,但在将这些发现转化为临床应用方面仍然存在挑战。未来的工作应集中在阐明线粒体Ca2+的调节机制,开发诊断工具和优化治疗干预措施,以改善卒中预后和提高患者的生活质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Role of mitochondrial Ca<sup>2+</sup> in stroke: From molecular mechanism to treatment strategy (Review).

Role of mitochondrial Ca<sup>2+</sup> in stroke: From molecular mechanism to treatment strategy (Review).

Role of mitochondrial Ca<sup>2+</sup> in stroke: From molecular mechanism to treatment strategy (Review).

Role of mitochondrial Ca2+ in stroke: From molecular mechanism to treatment strategy (Review).

Mitochondria serve a pivotal role in the pathological mechanisms of stroke, particularly in the regulation of intracellular calcium homeostasis. Stroke‑induced ischemia and reperfusion injury frequently result in disruptions of mitochondrial calcium ion (Ca2+) transport, characterized by Ca2+ overload. This imbalance directly impairs mitochondrial function and triggers neuronal death. Mitochondrial Ca2+ transport involves calcium influx, primarily mediated by the mitochondrial calcium uniporter (MCU) complex, and efflux, primarily through the sodium‑calcium exchanger (NCLX), making this mechanism a critical therapeutic target in stroke. The present review systematically explores the central role of mitochondrial Ca2+ transport in ischemia/reperfusion injury, with an in‑depth analysis of its pathological mechanisms in cellular energy metabolism, oxidative stress and apoptotic signaling pathways. Additionally, this review summarizes recent advancements in therapeutic strategies targeting mitochondrial Ca2+ transport, including MCU inhibitors, NCLX activators, antioxidant therapies and combination treatments. It also highlights the potential of Ca2+ signaling for early stroke diagnosis and reviews progress in dynamic monitoring technologies for mitochondrial Ca2+, such as fluorescence probes and super‑resolution microscopy. Despite significant progress in basic research, challenges remain in translating these findings into clinical applications. Future efforts should focus on elucidating the regulatory mechanisms of mitochondrial Ca2+, developing diagnostic tools and optimizing therapeutic interventions to improve stroke prognosis and enhance the quality of life of patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular medicine reports
Molecular medicine reports 医学-病理学
CiteScore
7.60
自引率
0.00%
发文量
321
审稿时长
1.5 months
期刊介绍: Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信