Mark Ringer, Antonio Maccataio, Rico Zapf, Anastasia Gaculenko, Susanne Adam, Oliver Aust, Sandra Loskarn, Julia Luther, Burak Aksoy, Vanessa Popp, Daniela Weidner, Madelaine Eck, Luis Munoz, Aline Bozec, Stefan Uderhardt, Tobias Bäuerle, Georg Schett, Gerhard Krönke, Ulrike Hüffmeier, Silke Frey, Ulrike Steffen
{"title":"在甘露聚糖诱导的银屑病关节炎小鼠模型中,髓过氧化物酶的缺失加重了皮肤和关节炎症。","authors":"Mark Ringer, Antonio Maccataio, Rico Zapf, Anastasia Gaculenko, Susanne Adam, Oliver Aust, Sandra Loskarn, Julia Luther, Burak Aksoy, Vanessa Popp, Daniela Weidner, Madelaine Eck, Luis Munoz, Aline Bozec, Stefan Uderhardt, Tobias Bäuerle, Georg Schett, Gerhard Krönke, Ulrike Hüffmeier, Silke Frey, Ulrike Steffen","doi":"10.1093/jleuko/qiaf110","DOIUrl":null,"url":null,"abstract":"<p><p>Psoriasis is a systemic inflammatory skin disorder with a prevalence of 2% in adults. Up to 30% of affected individuals further develop psoriatic arthritis (PsA), which is characterized by additional joint inflammation. Myeloperoxidase (MPO) is strongly expressed by neutrophils and, to a lesser extent, also by other myeloid cells. MPO converts hydrogen peroxide to secondary reactive oxygen species (ROS) and is thus primarily considered to induce tissue damage. However, recent studies suggest a protective role of MPO in psoriatic diseases. We aimed to investigate the role of MPO in PsA using the mouse model of mannan-induced PsA. MPO-deficient (Mpo-/-) mice showed exacerbated skin inflammation, joint swelling, and bone degradation associated with increased infiltration of neutrophils, classically activated macrophages, and T cells as well as increased inflammatory cytokine expression in the affected tissues. In the absence or blockade of MPO, in vitro neutrophil stimulation resulted in reduced NET formation and enhanced degranulation characterized by increased neutrophil elastase (NE) activity. In addition, in vitro differentiated macrophages from Mpo-/- mice showed increased interleukin (Il)-6 mRNA expression. Altogether, our findings suggest that MPO controls inflammatory responses in PsA, at least in part, by reducing neutrophil degranulation and serine protease release and, putatively, by reducing inflammatory cytokine production by macrophages.</p>","PeriodicalId":16186,"journal":{"name":"Journal of Leukocyte Biology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loss of myeloperoxidase aggravates skin and joint inflammation in the mannan-induced psoriatic arthritis mouse model.\",\"authors\":\"Mark Ringer, Antonio Maccataio, Rico Zapf, Anastasia Gaculenko, Susanne Adam, Oliver Aust, Sandra Loskarn, Julia Luther, Burak Aksoy, Vanessa Popp, Daniela Weidner, Madelaine Eck, Luis Munoz, Aline Bozec, Stefan Uderhardt, Tobias Bäuerle, Georg Schett, Gerhard Krönke, Ulrike Hüffmeier, Silke Frey, Ulrike Steffen\",\"doi\":\"10.1093/jleuko/qiaf110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Psoriasis is a systemic inflammatory skin disorder with a prevalence of 2% in adults. Up to 30% of affected individuals further develop psoriatic arthritis (PsA), which is characterized by additional joint inflammation. Myeloperoxidase (MPO) is strongly expressed by neutrophils and, to a lesser extent, also by other myeloid cells. MPO converts hydrogen peroxide to secondary reactive oxygen species (ROS) and is thus primarily considered to induce tissue damage. However, recent studies suggest a protective role of MPO in psoriatic diseases. We aimed to investigate the role of MPO in PsA using the mouse model of mannan-induced PsA. MPO-deficient (Mpo-/-) mice showed exacerbated skin inflammation, joint swelling, and bone degradation associated with increased infiltration of neutrophils, classically activated macrophages, and T cells as well as increased inflammatory cytokine expression in the affected tissues. In the absence or blockade of MPO, in vitro neutrophil stimulation resulted in reduced NET formation and enhanced degranulation characterized by increased neutrophil elastase (NE) activity. In addition, in vitro differentiated macrophages from Mpo-/- mice showed increased interleukin (Il)-6 mRNA expression. Altogether, our findings suggest that MPO controls inflammatory responses in PsA, at least in part, by reducing neutrophil degranulation and serine protease release and, putatively, by reducing inflammatory cytokine production by macrophages.</p>\",\"PeriodicalId\":16186,\"journal\":{\"name\":\"Journal of Leukocyte Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Leukocyte Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jleuko/qiaf110\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leukocyte Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jleuko/qiaf110","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Loss of myeloperoxidase aggravates skin and joint inflammation in the mannan-induced psoriatic arthritis mouse model.
Psoriasis is a systemic inflammatory skin disorder with a prevalence of 2% in adults. Up to 30% of affected individuals further develop psoriatic arthritis (PsA), which is characterized by additional joint inflammation. Myeloperoxidase (MPO) is strongly expressed by neutrophils and, to a lesser extent, also by other myeloid cells. MPO converts hydrogen peroxide to secondary reactive oxygen species (ROS) and is thus primarily considered to induce tissue damage. However, recent studies suggest a protective role of MPO in psoriatic diseases. We aimed to investigate the role of MPO in PsA using the mouse model of mannan-induced PsA. MPO-deficient (Mpo-/-) mice showed exacerbated skin inflammation, joint swelling, and bone degradation associated with increased infiltration of neutrophils, classically activated macrophages, and T cells as well as increased inflammatory cytokine expression in the affected tissues. In the absence or blockade of MPO, in vitro neutrophil stimulation resulted in reduced NET formation and enhanced degranulation characterized by increased neutrophil elastase (NE) activity. In addition, in vitro differentiated macrophages from Mpo-/- mice showed increased interleukin (Il)-6 mRNA expression. Altogether, our findings suggest that MPO controls inflammatory responses in PsA, at least in part, by reducing neutrophil degranulation and serine protease release and, putatively, by reducing inflammatory cytokine production by macrophages.
期刊介绍:
JLB is a peer-reviewed, academic journal published by the Society for Leukocyte Biology for its members and the community of immunobiologists. The journal publishes papers devoted to the exploration of the cellular and molecular biology of granulocytes, mononuclear phagocytes, lymphocytes, NK cells, and other cells involved in host physiology and defense/resistance against disease. Since all cells in the body can directly or indirectly contribute to the maintenance of the integrity of the organism and restoration of homeostasis through repair, JLB also considers articles involving epithelial, endothelial, fibroblastic, neural, and other somatic cell types participating in host defense. Studies covering pathophysiology, cell development, differentiation and trafficking; fundamental, translational and clinical immunology, inflammation, extracellular mediators and effector molecules; receptors, signal transduction and genes are considered relevant. Research articles and reviews that provide a novel understanding in any of these fields are given priority as well as technical advances related to leukocyte research methods.