Can Liu, Xueyao Zhang, Qi Qiao, Zhiwu Wang, Qing Shao, Jian Shi
{"title":"疏水深共晶溶剂从嗜热产酸发酵中回收挥发性脂肪酸。","authors":"Can Liu, Xueyao Zhang, Qi Qiao, Zhiwu Wang, Qing Shao, Jian Shi","doi":"10.1186/s13036-025-00544-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Volatile fatty acids (VFA) derived from acidogenic fermentation can be recovered as precursors for synthesizing value-added chemicals to replace those from fossil fuels. However, separating VFAs from the fermentation broth with complex constituents and a high-water content is an energy-intensive process.</p><p><strong>Results: </strong>This study developed an innovative membrane extraction technology, utilizing hydrophobic deep eutectic solvents (HDESs) as the acceptor phase along with an omniphobic membrane contactor for efficient extraction of anhydrous VFAs. All tested HDESs, three terpene-based type V HDESs and two tetraalkylammonium halide-based type III HDESs, were found to effectively extract VFAs at pH 3, with extraction recovery percentages (ERPs) up to 80% and 92% for 4 C- and 5 C- VFAs, respectively. However, the ERP of type V HDESs decreased significantly when the aqueous phase was adjusted to pH 6. Molecular simulations suggest that the VFA-HDES interactions vary with VFA dissociation, where the ion-dipole interactions between VFA conjugate bases and hydrogen bond donors at near-neutral pH conditions may destabilize the type V HDES structure and lead to reduced extraction efficiency. The temperature increases from 25 °C to 55 °C did not significantly impact VFA distribution, but a higher temperature could enhance cross-membrane mass transfer.</p><p><strong>Conclusions: </strong>This study demonstrated a novel continuous VFA extraction technology based on HDESs and elucidates the impact of temperature, pH, impurities in real fermentate and the applicability of an integrated membrane system through combined experimental and computational approaches.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"19 1","pages":"73"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12315322/pdf/","citationCount":"0","resultStr":"{\"title\":\"Volatile fatty acids recovery from thermophilic acidogenic fermentation using hydrophobic deep eutectic solvents.\",\"authors\":\"Can Liu, Xueyao Zhang, Qi Qiao, Zhiwu Wang, Qing Shao, Jian Shi\",\"doi\":\"10.1186/s13036-025-00544-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Volatile fatty acids (VFA) derived from acidogenic fermentation can be recovered as precursors for synthesizing value-added chemicals to replace those from fossil fuels. However, separating VFAs from the fermentation broth with complex constituents and a high-water content is an energy-intensive process.</p><p><strong>Results: </strong>This study developed an innovative membrane extraction technology, utilizing hydrophobic deep eutectic solvents (HDESs) as the acceptor phase along with an omniphobic membrane contactor for efficient extraction of anhydrous VFAs. All tested HDESs, three terpene-based type V HDESs and two tetraalkylammonium halide-based type III HDESs, were found to effectively extract VFAs at pH 3, with extraction recovery percentages (ERPs) up to 80% and 92% for 4 C- and 5 C- VFAs, respectively. However, the ERP of type V HDESs decreased significantly when the aqueous phase was adjusted to pH 6. Molecular simulations suggest that the VFA-HDES interactions vary with VFA dissociation, where the ion-dipole interactions between VFA conjugate bases and hydrogen bond donors at near-neutral pH conditions may destabilize the type V HDES structure and lead to reduced extraction efficiency. The temperature increases from 25 °C to 55 °C did not significantly impact VFA distribution, but a higher temperature could enhance cross-membrane mass transfer.</p><p><strong>Conclusions: </strong>This study demonstrated a novel continuous VFA extraction technology based on HDESs and elucidates the impact of temperature, pH, impurities in real fermentate and the applicability of an integrated membrane system through combined experimental and computational approaches.</p>\",\"PeriodicalId\":15053,\"journal\":{\"name\":\"Journal of Biological Engineering\",\"volume\":\"19 1\",\"pages\":\"73\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12315322/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Engineering\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13036-025-00544-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-025-00544-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Volatile fatty acids recovery from thermophilic acidogenic fermentation using hydrophobic deep eutectic solvents.
Background: Volatile fatty acids (VFA) derived from acidogenic fermentation can be recovered as precursors for synthesizing value-added chemicals to replace those from fossil fuels. However, separating VFAs from the fermentation broth with complex constituents and a high-water content is an energy-intensive process.
Results: This study developed an innovative membrane extraction technology, utilizing hydrophobic deep eutectic solvents (HDESs) as the acceptor phase along with an omniphobic membrane contactor for efficient extraction of anhydrous VFAs. All tested HDESs, three terpene-based type V HDESs and two tetraalkylammonium halide-based type III HDESs, were found to effectively extract VFAs at pH 3, with extraction recovery percentages (ERPs) up to 80% and 92% for 4 C- and 5 C- VFAs, respectively. However, the ERP of type V HDESs decreased significantly when the aqueous phase was adjusted to pH 6. Molecular simulations suggest that the VFA-HDES interactions vary with VFA dissociation, where the ion-dipole interactions between VFA conjugate bases and hydrogen bond donors at near-neutral pH conditions may destabilize the type V HDES structure and lead to reduced extraction efficiency. The temperature increases from 25 °C to 55 °C did not significantly impact VFA distribution, but a higher temperature could enhance cross-membrane mass transfer.
Conclusions: This study demonstrated a novel continuous VFA extraction technology based on HDESs and elucidates the impact of temperature, pH, impurities in real fermentate and the applicability of an integrated membrane system through combined experimental and computational approaches.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.