Shengjin Cui, Wenting Ma, Huidi Peng, Yunyun Ye, Yunming Qing, Guanyun Wei, Jie Wang, Xian Zhang
{"title":"全基因组挖掘揭示了激素肠杆菌亚种抗生素耐药/毒力因子基因的遗传可塑性。xiangfangensis。","authors":"Shengjin Cui, Wenting Ma, Huidi Peng, Yunyun Ye, Yunming Qing, Guanyun Wei, Jie Wang, Xian Zhang","doi":"10.1093/jambio/lxaf196","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This study aims to systematically characterize the genetic basis and intra-species differentiation of antibiotic resistance/virulence factor genes (ARGs/VFGs) in Enterobacter hormaechei subsp. xiangfangensis.</p><p><strong>Methods and results: </strong>A high-quality metagenome-assembled genome of E. hormaechei subsp. xiangfangensis bin99 (97.22% completeness, 1.63% contamination) was acquired. Phylogenomic and average nucleotide identity (≥95%) analyses confirmed its taxonomic assignment. Pan-genomic analysis revealed an open configuration (Heap's exponent B = 0.34) with a large accessory genome (approximate 2965 genes) and a stabilized core genome (1139 genes). Critically, a strong positive correlation (r = 0.86, P < 2.2e-16) was observed between mobile genetic elements (MGEs) and accessory gene abundance, probably suggesting horizontal gene transfer (HGT) as a potential driver of genome diversity. Functional annotation highlighted distinct roles: core genes enriched in essential metabolism, while accessory/strain-specific genes were linked to adaptation. Screening identified significant inter-strain variation in ARGs (n = 31) and VFGs (n = 35). Bin99 itself harbored 19 ARGs (e.g. multidrug: soxS, ramA, oqxB) and 40 VFGs (e.g. flagella, T6SS). Importantly, MGE abundance showed a significant positive correlation with ARGs (r = 0.67, P < 2.2e-16) but a negative correlation with VFGs (r = -0.29, P < 3.7e-9), suggesting that ARGs were frequently linked to MGEs facilitating HGT-mediated spread, while VFGs might rely less on this route.</p><p><strong>Conclusions: </strong>The findings provide genome-wide evidence for distinct genetic plasticity underlying ARG and VFG evolution in E. hormaechei subsp. xiangfangensis, highlighting implications for resistance and virulence dissemination.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide mining reveals the genetic plasticity of antibiotic resistance/virulence factor genes in Enterobacter hormaechei subsp. xiangfangensis.\",\"authors\":\"Shengjin Cui, Wenting Ma, Huidi Peng, Yunyun Ye, Yunming Qing, Guanyun Wei, Jie Wang, Xian Zhang\",\"doi\":\"10.1093/jambio/lxaf196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>This study aims to systematically characterize the genetic basis and intra-species differentiation of antibiotic resistance/virulence factor genes (ARGs/VFGs) in Enterobacter hormaechei subsp. xiangfangensis.</p><p><strong>Methods and results: </strong>A high-quality metagenome-assembled genome of E. hormaechei subsp. xiangfangensis bin99 (97.22% completeness, 1.63% contamination) was acquired. Phylogenomic and average nucleotide identity (≥95%) analyses confirmed its taxonomic assignment. Pan-genomic analysis revealed an open configuration (Heap's exponent B = 0.34) with a large accessory genome (approximate 2965 genes) and a stabilized core genome (1139 genes). Critically, a strong positive correlation (r = 0.86, P < 2.2e-16) was observed between mobile genetic elements (MGEs) and accessory gene abundance, probably suggesting horizontal gene transfer (HGT) as a potential driver of genome diversity. Functional annotation highlighted distinct roles: core genes enriched in essential metabolism, while accessory/strain-specific genes were linked to adaptation. Screening identified significant inter-strain variation in ARGs (n = 31) and VFGs (n = 35). Bin99 itself harbored 19 ARGs (e.g. multidrug: soxS, ramA, oqxB) and 40 VFGs (e.g. flagella, T6SS). Importantly, MGE abundance showed a significant positive correlation with ARGs (r = 0.67, P < 2.2e-16) but a negative correlation with VFGs (r = -0.29, P < 3.7e-9), suggesting that ARGs were frequently linked to MGEs facilitating HGT-mediated spread, while VFGs might rely less on this route.</p><p><strong>Conclusions: </strong>The findings provide genome-wide evidence for distinct genetic plasticity underlying ARG and VFG evolution in E. hormaechei subsp. xiangfangensis, highlighting implications for resistance and virulence dissemination.</p>\",\"PeriodicalId\":15036,\"journal\":{\"name\":\"Journal of Applied Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jambio/lxaf196\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxaf196","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Genome-wide mining reveals the genetic plasticity of antibiotic resistance/virulence factor genes in Enterobacter hormaechei subsp. xiangfangensis.
Aims: This study aims to systematically characterize the genetic basis and intra-species differentiation of antibiotic resistance/virulence factor genes (ARGs/VFGs) in Enterobacter hormaechei subsp. xiangfangensis.
Methods and results: A high-quality metagenome-assembled genome of E. hormaechei subsp. xiangfangensis bin99 (97.22% completeness, 1.63% contamination) was acquired. Phylogenomic and average nucleotide identity (≥95%) analyses confirmed its taxonomic assignment. Pan-genomic analysis revealed an open configuration (Heap's exponent B = 0.34) with a large accessory genome (approximate 2965 genes) and a stabilized core genome (1139 genes). Critically, a strong positive correlation (r = 0.86, P < 2.2e-16) was observed between mobile genetic elements (MGEs) and accessory gene abundance, probably suggesting horizontal gene transfer (HGT) as a potential driver of genome diversity. Functional annotation highlighted distinct roles: core genes enriched in essential metabolism, while accessory/strain-specific genes were linked to adaptation. Screening identified significant inter-strain variation in ARGs (n = 31) and VFGs (n = 35). Bin99 itself harbored 19 ARGs (e.g. multidrug: soxS, ramA, oqxB) and 40 VFGs (e.g. flagella, T6SS). Importantly, MGE abundance showed a significant positive correlation with ARGs (r = 0.67, P < 2.2e-16) but a negative correlation with VFGs (r = -0.29, P < 3.7e-9), suggesting that ARGs were frequently linked to MGEs facilitating HGT-mediated spread, while VFGs might rely less on this route.
Conclusions: The findings provide genome-wide evidence for distinct genetic plasticity underlying ARG and VFG evolution in E. hormaechei subsp. xiangfangensis, highlighting implications for resistance and virulence dissemination.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.