吉菲和废侧耳菌基质对柴油污染农业土壤的植物修复、生物刺激和毒性研究。

IF 3.1 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Gloria Anaí Valencia-Luna, Damián Lozada-Campos, Omar Romero-Arenas, Angela Abarca-Pérez, Beatriz Pérez-Armendáriz
{"title":"吉菲和废侧耳菌基质对柴油污染农业土壤的植物修复、生物刺激和毒性研究。","authors":"Gloria Anaí Valencia-Luna, Damián Lozada-Campos, Omar Romero-Arenas, Angela Abarca-Pérez, Beatriz Pérez-Armendáriz","doi":"10.1080/15226514.2025.2540481","DOIUrl":null,"url":null,"abstract":"<p><p>In Mexico, oil spills are primarily caused by fuel theft. These incidents have led to the degradation of agricultural soils, with adverse effects on the environment, human health, and the economic development of affected regions. Consequently, biotechnological decontamination techniques have emerged as a promising solution for the restoration of these sites. This study aimed to evaluate the phytoremediation of diesel-contaminated agricultural soils using <i>Gypsophila paniculata</i> and spent <i>Pleurotus</i> spp. substrate as a biostimulant. Additionally, the potential genetic and cellular damage caused by the contaminants present in the soil was assessed before and after the application of biological decontamination treatments. The greenhouse experiment lasted 50 days. Morphological variables of the plants and the total petroleum hydrocarbons (TPH) (mg/kg) were measured, alongside soil toxicity, which was assessed by evaluating the mitotic index (%) and micronucleus frequency (%) in <i>Vicia faba</i> cells. Plants grown with the biostimulant exhibited enhanced morphological characteristics, while the bioremediation treatments achieved diesel removal rates ranging from 29.4% to 46.1%. However, potential genotoxic and cytotoxic effects were observed across all treatments.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-8"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phytoremediation, biostimulation and toxicity in diesel-polluted agricultural soils using <i>Gypsophila paniculata</i> and spent <i>Pleurotus</i> spp. substrate.\",\"authors\":\"Gloria Anaí Valencia-Luna, Damián Lozada-Campos, Omar Romero-Arenas, Angela Abarca-Pérez, Beatriz Pérez-Armendáriz\",\"doi\":\"10.1080/15226514.2025.2540481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In Mexico, oil spills are primarily caused by fuel theft. These incidents have led to the degradation of agricultural soils, with adverse effects on the environment, human health, and the economic development of affected regions. Consequently, biotechnological decontamination techniques have emerged as a promising solution for the restoration of these sites. This study aimed to evaluate the phytoremediation of diesel-contaminated agricultural soils using <i>Gypsophila paniculata</i> and spent <i>Pleurotus</i> spp. substrate as a biostimulant. Additionally, the potential genetic and cellular damage caused by the contaminants present in the soil was assessed before and after the application of biological decontamination treatments. The greenhouse experiment lasted 50 days. Morphological variables of the plants and the total petroleum hydrocarbons (TPH) (mg/kg) were measured, alongside soil toxicity, which was assessed by evaluating the mitotic index (%) and micronucleus frequency (%) in <i>Vicia faba</i> cells. Plants grown with the biostimulant exhibited enhanced morphological characteristics, while the bioremediation treatments achieved diesel removal rates ranging from 29.4% to 46.1%. However, potential genotoxic and cytotoxic effects were observed across all treatments.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2025.2540481\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2540481","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在墨西哥,石油泄漏主要是由燃料盗窃引起的。这些事件导致农业土壤退化,对环境、人类健康和受影响地区的经济发展产生不利影响。因此,生物技术去污技术已成为恢复这些地点的一种有希望的解决办法。本研究旨在评价利用石膏和废侧耳菌基质作为生物刺激素修复柴油污染农业土壤的效果。此外,在应用生物净化处理前后,对土壤中存在的污染物造成的潜在遗传和细胞损伤进行了评估。温室试验持续50 d。测定植物形态变量和总石油烃(TPH) (mg/kg),并通过蚕豆细胞有丝分裂指数(%)和微核频率(%)评价土壤毒性。添加了生物刺激素的植物表现出增强的形态特征,而生物修复处理的柴油去除率在29.4% ~ 46.1%之间。然而,在所有治疗中都观察到潜在的基因毒性和细胞毒性作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phytoremediation, biostimulation and toxicity in diesel-polluted agricultural soils using Gypsophila paniculata and spent Pleurotus spp. substrate.

In Mexico, oil spills are primarily caused by fuel theft. These incidents have led to the degradation of agricultural soils, with adverse effects on the environment, human health, and the economic development of affected regions. Consequently, biotechnological decontamination techniques have emerged as a promising solution for the restoration of these sites. This study aimed to evaluate the phytoremediation of diesel-contaminated agricultural soils using Gypsophila paniculata and spent Pleurotus spp. substrate as a biostimulant. Additionally, the potential genetic and cellular damage caused by the contaminants present in the soil was assessed before and after the application of biological decontamination treatments. The greenhouse experiment lasted 50 days. Morphological variables of the plants and the total petroleum hydrocarbons (TPH) (mg/kg) were measured, alongside soil toxicity, which was assessed by evaluating the mitotic index (%) and micronucleus frequency (%) in Vicia faba cells. Plants grown with the biostimulant exhibited enhanced morphological characteristics, while the bioremediation treatments achieved diesel removal rates ranging from 29.4% to 46.1%. However, potential genotoxic and cytotoxic effects were observed across all treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Phytoremediation
International Journal of Phytoremediation 环境科学-环境科学
CiteScore
7.60
自引率
5.40%
发文量
145
审稿时长
3.4 months
期刊介绍: The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信