{"title":"吉菲和废侧耳菌基质对柴油污染农业土壤的植物修复、生物刺激和毒性研究。","authors":"Gloria Anaí Valencia-Luna, Damián Lozada-Campos, Omar Romero-Arenas, Angela Abarca-Pérez, Beatriz Pérez-Armendáriz","doi":"10.1080/15226514.2025.2540481","DOIUrl":null,"url":null,"abstract":"<p><p>In Mexico, oil spills are primarily caused by fuel theft. These incidents have led to the degradation of agricultural soils, with adverse effects on the environment, human health, and the economic development of affected regions. Consequently, biotechnological decontamination techniques have emerged as a promising solution for the restoration of these sites. This study aimed to evaluate the phytoremediation of diesel-contaminated agricultural soils using <i>Gypsophila paniculata</i> and spent <i>Pleurotus</i> spp. substrate as a biostimulant. Additionally, the potential genetic and cellular damage caused by the contaminants present in the soil was assessed before and after the application of biological decontamination treatments. The greenhouse experiment lasted 50 days. Morphological variables of the plants and the total petroleum hydrocarbons (TPH) (mg/kg) were measured, alongside soil toxicity, which was assessed by evaluating the mitotic index (%) and micronucleus frequency (%) in <i>Vicia faba</i> cells. Plants grown with the biostimulant exhibited enhanced morphological characteristics, while the bioremediation treatments achieved diesel removal rates ranging from 29.4% to 46.1%. However, potential genotoxic and cytotoxic effects were observed across all treatments.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-8"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phytoremediation, biostimulation and toxicity in diesel-polluted agricultural soils using <i>Gypsophila paniculata</i> and spent <i>Pleurotus</i> spp. substrate.\",\"authors\":\"Gloria Anaí Valencia-Luna, Damián Lozada-Campos, Omar Romero-Arenas, Angela Abarca-Pérez, Beatriz Pérez-Armendáriz\",\"doi\":\"10.1080/15226514.2025.2540481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In Mexico, oil spills are primarily caused by fuel theft. These incidents have led to the degradation of agricultural soils, with adverse effects on the environment, human health, and the economic development of affected regions. Consequently, biotechnological decontamination techniques have emerged as a promising solution for the restoration of these sites. This study aimed to evaluate the phytoremediation of diesel-contaminated agricultural soils using <i>Gypsophila paniculata</i> and spent <i>Pleurotus</i> spp. substrate as a biostimulant. Additionally, the potential genetic and cellular damage caused by the contaminants present in the soil was assessed before and after the application of biological decontamination treatments. The greenhouse experiment lasted 50 days. Morphological variables of the plants and the total petroleum hydrocarbons (TPH) (mg/kg) were measured, alongside soil toxicity, which was assessed by evaluating the mitotic index (%) and micronucleus frequency (%) in <i>Vicia faba</i> cells. Plants grown with the biostimulant exhibited enhanced morphological characteristics, while the bioremediation treatments achieved diesel removal rates ranging from 29.4% to 46.1%. However, potential genotoxic and cytotoxic effects were observed across all treatments.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2025.2540481\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2540481","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Phytoremediation, biostimulation and toxicity in diesel-polluted agricultural soils using Gypsophila paniculata and spent Pleurotus spp. substrate.
In Mexico, oil spills are primarily caused by fuel theft. These incidents have led to the degradation of agricultural soils, with adverse effects on the environment, human health, and the economic development of affected regions. Consequently, biotechnological decontamination techniques have emerged as a promising solution for the restoration of these sites. This study aimed to evaluate the phytoremediation of diesel-contaminated agricultural soils using Gypsophila paniculata and spent Pleurotus spp. substrate as a biostimulant. Additionally, the potential genetic and cellular damage caused by the contaminants present in the soil was assessed before and after the application of biological decontamination treatments. The greenhouse experiment lasted 50 days. Morphological variables of the plants and the total petroleum hydrocarbons (TPH) (mg/kg) were measured, alongside soil toxicity, which was assessed by evaluating the mitotic index (%) and micronucleus frequency (%) in Vicia faba cells. Plants grown with the biostimulant exhibited enhanced morphological characteristics, while the bioremediation treatments achieved diesel removal rates ranging from 29.4% to 46.1%. However, potential genotoxic and cytotoxic effects were observed across all treatments.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.