{"title":"时滞多线索概率判断系统对环境不确定性谱的神经对应。","authors":"Yoo-Sang Chang, Younho Seong, Sun Yi","doi":"10.3389/fncom.2025.1595278","DOIUrl":null,"url":null,"abstract":"<p><p>Despite state-of-the-art technologies like artificial intelligence, human judgment is critically essential in cooperative systems, such as the multi-agent system (MAS), which collect information among agents based on multiple-cue judgment. Human agents can prevent impaired situational awareness of automated agents by confirming situations under environmental uncertainty. System error caused by uncertainty can result in an unreliable system environment, and this environment affects the human agent, resulting in non-optimal decision-making in MAS. Thus, it is necessary to know how human behavior is changed to capture system reliability under uncertainty. Another issue affecting MAS is time delay, which can delay agent information transfer, resulting in low performance and instability. However, it is difficult to find studies on the influence of time delay on human agents. This study is about understanding the human decision-making process under a specific system reliability environment by uncertainty with time delay. We used concepts of expected and unexpected uncertainty to implement reliability of the system usage environment with three types of time delay conditions: no time delay, regular time delay, and irregular time delay conditions. We used electroencephalogram (EEG) for human cognitive neural mechanisms in multiple-cue judgment systems to understand human decision-making. In the reliability of system usage environment, the unreliable system environment significantly creates less memory load by less utilization of system rules for decision-making. In terms of time delay, delayed information delivery does not significantly affect memory load for decision-making.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"19 ","pages":"1595278"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12310571/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neural correspondence to spectrum of environmental uncertainty in multiple-cue probability judgment system with time delay.\",\"authors\":\"Yoo-Sang Chang, Younho Seong, Sun Yi\",\"doi\":\"10.3389/fncom.2025.1595278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite state-of-the-art technologies like artificial intelligence, human judgment is critically essential in cooperative systems, such as the multi-agent system (MAS), which collect information among agents based on multiple-cue judgment. Human agents can prevent impaired situational awareness of automated agents by confirming situations under environmental uncertainty. System error caused by uncertainty can result in an unreliable system environment, and this environment affects the human agent, resulting in non-optimal decision-making in MAS. Thus, it is necessary to know how human behavior is changed to capture system reliability under uncertainty. Another issue affecting MAS is time delay, which can delay agent information transfer, resulting in low performance and instability. However, it is difficult to find studies on the influence of time delay on human agents. This study is about understanding the human decision-making process under a specific system reliability environment by uncertainty with time delay. We used concepts of expected and unexpected uncertainty to implement reliability of the system usage environment with three types of time delay conditions: no time delay, regular time delay, and irregular time delay conditions. We used electroencephalogram (EEG) for human cognitive neural mechanisms in multiple-cue judgment systems to understand human decision-making. In the reliability of system usage environment, the unreliable system environment significantly creates less memory load by less utilization of system rules for decision-making. In terms of time delay, delayed information delivery does not significantly affect memory load for decision-making.</p>\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":\"19 \",\"pages\":\"1595278\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12310571/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2025.1595278\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2025.1595278","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Neural correspondence to spectrum of environmental uncertainty in multiple-cue probability judgment system with time delay.
Despite state-of-the-art technologies like artificial intelligence, human judgment is critically essential in cooperative systems, such as the multi-agent system (MAS), which collect information among agents based on multiple-cue judgment. Human agents can prevent impaired situational awareness of automated agents by confirming situations under environmental uncertainty. System error caused by uncertainty can result in an unreliable system environment, and this environment affects the human agent, resulting in non-optimal decision-making in MAS. Thus, it is necessary to know how human behavior is changed to capture system reliability under uncertainty. Another issue affecting MAS is time delay, which can delay agent information transfer, resulting in low performance and instability. However, it is difficult to find studies on the influence of time delay on human agents. This study is about understanding the human decision-making process under a specific system reliability environment by uncertainty with time delay. We used concepts of expected and unexpected uncertainty to implement reliability of the system usage environment with three types of time delay conditions: no time delay, regular time delay, and irregular time delay conditions. We used electroencephalogram (EEG) for human cognitive neural mechanisms in multiple-cue judgment systems to understand human decision-making. In the reliability of system usage environment, the unreliable system environment significantly creates less memory load by less utilization of system rules for decision-making. In terms of time delay, delayed information delivery does not significantly affect memory load for decision-making.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro